
Diagnostic Human Fatigue Classification using
Wearable Sensors for Intelligent Systems

Likhitha Nagahanumaiah
Rochester Institute of Technology

Rochester, New York
ln2047@rit.edu

Saurav Singh
Rochester Institute of Technology

Rochester, New York
ss3337@rit.edu

Jamison Heard
Rochester Institute of Technology

Rochester, New York
jrheee@rit.edu

Abstract—Adaptive intelligent systems seek to optimize team
performance by adapting to a human teammate. Typically,
these adaptations are based on factors known to impact human
performance, such as adapting autonomy levels based on human
workload. These systems have yet to focus on adapting based
on human fatigue; however, fatigue can be just as detrimental
to performance as workload. This paper presents a multi-
modal approach to fatigue classification in order to provide an
intelligent system with the necessary information to optimize
team performance over long time frames. The results indicate
that mental and physical fatigue can be classified accurately
for two fatigue levels, but cross-fatigue classification is a more
difficult problem.

Index Terms—intelligent systems, fatigue, human-state assess-
ment

I. INTRODUCTION

Intelligent systems, such as adaptive automation [1] need to
interact with humans for long periods of time, while adapt-
ing their interaction strategies. Human performance may be
negatively impacted during this prolonged interaction period,
due to fatigue effects [2], [3]. An intelligent system capable
of understanding a human’s fatigue level may perform more
impactful adaptations, such as appropriating more task load
when a person is fatigued or allocating a mental task to a
physically fatigued human. This paper seeks to detect mental
and physical fatigue using multi-modal sensor data in order to
permit these impactful adaptation strategies.

Human fatigue can be categorized as physical or mental.
Physical fatigue occurs during intense physical activity and
negatively impacts muscle functions. Similarly, cognitive fa-
tigue is the result of prolonged cognitive activity and can
lead to attention problems. Both fatigue types can occur when
humans are interacting with intelligent systems; however, most
related work focuses on one or the other.

Fatigue has typically been measured using subjective ap-
proaches, where a questionnaire is completed after a task.
However, these approaches are intrusive and have poor time
resolution. Thus, there has been a shift in the community
to focus on physiological metrics (i.e, respiration rate, elec-
tromyography (EMG), and heart rate). These metrics correlate
to mental and/or physical fatigue and can be collected using
wearable sensors. Such a collection scheme allows continuous
monitoring of an individual’s fatigue state while minimally
impacting the primary task.

Physiological metrics are often fed into machine-learning
pipelines which produce a fatigue classification (e.g., high
or low fatigue). However, typical approaches focus solely on
physical [4] or mental fatigue [5], [6]. This study enhances the
current research works by building a machine-learning model
pipeline that classifies both mental and physical fatigue. Data
from a human-subjects experiment where both fatigue types
are induced is used to train and validate the machine-learning
pipeline.

This paper is organized as follows. Section II reviews the
literature, while Section III details the human subjects ex-
periment. Section IV presents the machine-learning approach
where the results are presented in Section V. The results are
discussed and concluded in Section VI.

II. RELATED WORK

Prolonged work or sleep loss can lead to a gradual or
sudden onset of fatigue [10]. These onsets impact a human’s
physiological state. However, most research on fatigue from a
physiological perspective has focused on muscles [11]. The
spectral modification (change in magnitude and phase) of
the electromyography (EMG) signals shifts towards a lower
frequency [12]. Heart-rate and respiration rate may also in-
crease with physical fatigue [13], [14]. Heart-rate variability
decreases with mental and physical fatigue [13]. Mental fa-
tigue has typically been assessed using electroencephalogra-
phy (EEG) measures. Specifically, the relative wavelet packet
energy in the frequency band decreases, and wavelet packet
entropy decreases [15].

Machine learning is typically used to map physiological
signals to a fatigue level. Table I presents an overview of
various algorithms, fatigue type, levels, metrics, and overall
classification accuracy. Most work focuses on classifying
physical or mental fatigue using classical machine-learning
approaches, such as random forest or support-vector machines.
The physical fatigue approaches rely on muscle or acceler-
ation information, while mental fatigue primarily relies on
brain activity measures. There tends to be a large range of
classification accuracy, from 62% to 91%.

The reviewed works focus on physical or mental fatigue
classification, but do not consider classifying both fatigue
types. Additionally, the mental fatigue classification uses EEG
data, which has low operator acceptability after hours of
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TABLE I
LITERATURE SUMMARY

Algorithm Fatigue type Fatigue Levels Metrics Accuracy
Random Forest Physical fatigue [7] 2 IMU,EEG, EMG 0.88

Support Vector machine Mental fatigue [8] 2 EEG 0.91
Physical fatigue [7] 2 EMG, EEG, IMU 0.78

K-Nearest Neighbor(K-NN) Mental fatigue [9] 3 EEG, PPG 0.62

use [16]. The presented algorithmic approach focuses on
using non-intrusive wearable sensors (such as a chest-strap)
to classify both mental and physical fatigue.

III. HUMAN SUBJECTS EXPERIMENT

The goal of this study is to create a fatigue detection model
that detects both mental and physical fatigue by capturing
physiological signals from wearable sensors. Two tasks were
used to collect data corresponding to mental and physical
fatigue: (i) Jigsaw puzzle-solving task, (ii) Pick and Place task.
Each participant completed the tasks in a random order in
order to counterbalance the fatigue conditions.

The experiment started with collecting demographic infor-
mation and a baseline session, where physiological signals
are collected from the participants for 5 minutes while sitting
still. A five-minute break then occurred before completing the
physical or mental fatigue task. Each physical and mental
task is conducted for an hour, and followed by a baseline
collection and a 5-minute break. Each task was designed in
such a way that each round consists of the same task demand
and one round is approximately 60 seconds. A consistent task
demand level allows for fatigue effects to arise without being
confounded by varying task demand levels. Participants rated
their fatigue levels and workload on a Likert-scale from 1
(little to no) to 5 (high) after each task round.

Participants were fitted with a Zephyr BioHarness and Myo
armband in order to collect the physiological signals during
the experiment. The BioHarness is a chest-strap device that
collects preprocessed heart rate, respiration rate, heartbeat
interval, and posture measures at 1 Hz. The Myo armband
was fitted on the participant’s forearms in order to collect 8-
channel EMG and IMU data at a rate of 200 Hz and 50 Hz,
respectively.

A. Pick and Place task

Two 7.5 lbs adjustable dumbbells (shown in Figure 1) must
be carried around a 10-meter u-shaped indoor track. The
subject performs a curl with each arm at the beginning of
the lap and walks to the end of the u-shape track and back.
The weights are then placed on a standard height table. The
subject then walks the track again without the weights, after
which the lap is restarted with picking up the weights. One
lap with weights and one lap without weights is considered to
be one complete round, and at the end of each round, the time
taken to walk with weights and without weights are recorded
using timestamps from the ultrasonic sensors (teensy board)
mounted on the wooden box. The task is completed for an
entire hour in order to elicit physical fatigue.

Fig. 1. Weights and Teensy board layout.

B. Puzzle-solving task

The subjects are given a jigsaw mind game puzzle (provided
in Figure 2) which can be designed with varying difficulty
levels, but for this experiment, we use 16 pieces(4x4) of
a jigsaw puzzle to match the physical task demand of 60
seconds. The game is designed using the Unity game engine,
where each movement of each puzzle piece is timestamped and
is recorded as a correct and wrong move, game start, restart,
game duration, and game exit. The subject completes the same
puzzle repetitively for an hour, which elicits the desired mental
fatigue levels.

Fig. 2. The Jigsaw Puzzle for the Mental Fatigue Task.

C. Participant Information

22 healthy subjects completed the IRB-approved study. The
average age of the participants was 22.27 years. There were
11 undergraduates, 9 Masters students, and 2 PhD students.
Participants were excluded from the study if they were unable
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to lift the weights, walk for an hour, were pregnant, or had a
nickle sensitivity.

IV. METHODOLOGY

The collected physiological information is windowed for 1-
minute with a 10-second stride. This segmented data is then
preprocessed to reduce noise and to support feature extraction.
The extracted features are then used in a machine-learning
algorithm that classifies mental or physical fatigue as low or
high.

A. Data Preprocessing

The segmented physiological data is preprocessed in order
to fill in missing information and reduce noise. The raw EMG
signals obtained from the Myo armband are sampled at the rate
of 200 Hz. These signal are passed through a notch-filter at 60
Hz in order to reduce power-line noise. No filter is applied to
the BioHarness data, since this data is preprocessed onboard
the device. Any missing samples from the Myo or BioHarness
are imputed with linear regression techniques before features
are extracted.

B. Feature Extraction and Reduction

The mean, standard deviation, variance, gradient, and slope
is calculated for the processed heart-rate and respiration-rate.
The mean is the arithmetic average of a set of given numbers.

Arithmeticmean =
(x1 + x2 + ...+ xn)

n
(1)

The variance is the average of the squared differences from
the mean.

σ2 =

∑n
i=1(xi − x̄)2

n− 1
(2)

The term “gradient” refers to a graded difference in physio-
logical activity along an axis. A line’s slope is the ratio of
how much y increases as x increases by some amount.

m =
y2 − y1
x2 − x1

(3)

Heart-rate variability time, frequency, and non-linear do-
main features are extracted from the raw ECG signal that the
BioHarness collects. However, only the mean HRV, standard
deviation HRV, HRV very low frequency and very high
frequency components, the ratio of the HRV low and high
frequency, and the pNN 50 and 20 features were used in the
classification process, due to their high correlations with the
fatigue levels.

The median frequency of each Myo EMG channel is ex-
tracted. The median frequency fm of a power spectrum P (f)
is defined as the frequency satisfying the following equation
[17]:

∫ fm

0

P (f)df =

∫ ∞

fm

P (f)df =
1

2

∫ ∞

0

P (f)df (4)

The chosen features are known to correlate with physical
and/or mental fatigue, where a total of 42 features are ex-
tracted. This number is reduced using Principal component

analysis (PCA), in order to develop less complex models and
help prevent overfitting.

PCA reduces dimensionality by finding projections that
maximize variance (information) along an axis. This is done
by computing eigen vectors and values of a dataset. Larger
eigen values represent more information in the corresponding
principle component; thus, the proportion of variance can be
computed as a ranked ratio: PoV = λ1+λ2+...+λi

λ1+λ2+...+λN
, where

λi is the ith largest eigen value. This work found the PoV
corresponding to 0.9 or explains 90% of the variance. The
corresponding eigen vectors are then used to project the 42
features into a smaller dimensional space. The PCA algorithm
found 20 principle components for physical fatigue and 22
principle components for mental fatigue.

C. Fatigue classification Models

The machine learning models considered for this study are:
Random Forest(RF), and Support Vector Machine (SVM).
Each model was trained to classify either physical or mental
fatigue as low (0) or high (1). The low labels were from the
first 5-minute resting baseline collection and the high labels
were from the last 5-minutes from the mental or physical
fatigue conditions. The intuition is that a person will not be
fatigued when they first come into the experiment, but will be
fatigued at the end of each fatigue condition. This formulation
also produces a balanced training/testing paradigm.

1) Random Forest: A random forest algorithm is composed
of multiple decision trees, where each tree predicts a class
using simple decision rules (e.g., if heart-rate is greater than
80, classify high fatigue) and no two trees are the same. A
final prediction is the max vote of all of the decision trees in
the random forest.

A grid search was performed to find the fewest number of
trees with the least amount of depth on the training dataset
for one LOSO CV fold. The number of trees varied from
10 to 500 in steps of 10, while max depth varied from 5
to 25 (greater than than the max number of components). It
was found that 50 trees with a max depth of 25 produced the
best results without diminishing returns (increasing complexity
without increasing performance).

2) Support Vector Machine: Support Vector Machines find
a hyperplane that linearly separates the dataset with some slack
(cost). This hyperplane is determined by support vectors that
maximize the margin between the hyperplane and the edge of
the examples. Similar to the random forest, a grid search was
performed by changing the cost values, gamma (influence of
a sample based on distance), and kernel (radial basis function
or polynomial). It was found that a radial basis function with
a cost value of 10 and gamma value of 0.001 produced the
best results.

V. RESULTS

Two validation paradigms are performed: Leave-One-
Subject-Out Cross validation (LOSO CV) and Cross-Fatigue
validation (CFV). LOSO CV trains a model on all but one
participant and validates on the remaining participant. This
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TABLE II
LOSO CV RESULTS BY MODEL TYPE AND FATIGUE TYPE.

Model Fatigue Precision Recall F-1 score Support Accuracy(%)

Random Forest Mental 0.79 0.80 0.79 535 80.2
Physical 0.94 0.94 0.95 347 94.5

Support Vector Machine Mental 0.84 0.85 0.84 535 85.0
Physical 0.96 0.96 0.96 347 96.5

TABLE III
CROSS-FATIGUE CLASSIFICATION RESULTS BY MODEL TYPE AND FATIGUE TYPE.

Model Fatigue Precision Recall F-1 score Support Accuracy(%)

Random Forest Mental 1.00 0.186 0.31 403 18.6
Physical 1.00 0.63 0.77 192 64.5

Support Vector Machine Mental 1.00 0.10 0.18 403 10.1
Physical 1.00 0.33 0.49 192 32.8

approach is repeated such that each participant is tested on
once. The LOSO CV results provide insight into a model’s
population generalizability (how well it performs on an previ-
ously unseen human).

The CFV paradigm examines how a model performs clas-
sifying any fatigue type by training on data corresponding
to a baseline and one fatigue condition and testing on the
remaining condition. For example, a model may be trained on
the baseline condition and the last 5-minutes of the mental
fatigue condition. The model is then evaluated on the last 5-
minutes of the physical fatigue condition.

Sensor failures required removing data that was either NaN
or where below theoretical thresholds (i.e., Heart-rate was
determined to be 0). This produced a smaller dataset than
expected, primarily due to either ECG signal noise or one of
the Myo (EMG) devices stopped sending samples. However,
there are sufficient samples to determine the accuracy of the
fatigue models.

A. Leave-One-Subject-Out Cross-Validation

LOSO CV permits understanding how a model may perform
on a previously unseen human. The corresponding results are
presented in Table II. Overall, the support vector machine
achieved higher performance than the random forest for both
fatigue types. However, each model achieved > 80% accuracy,
which is in line with the state-of-the-art results in Table I.
Physical fatigue was classified better than mental fatigue,
which may be attributed to the inclusion of the EMG signals.

The LOSO CV was also performed for classifying overall
fatigue, by combining the mental with the physical fatigue
data. This paradigm creates a large class imbalance; thus, un-
dersampling was performed to better balance the classes. The
random forest model classified overall fatigue correctly 86%
of the time, while the support vector machine classified overall
fatigue correctly 90% of the time. These results indicate that
the support vector machine achieves greater performance than
the random forest classifier.

B. Cross-Fatigue Validation

Overall fatigue is comprised of mental and physical com-
ponents. However, there may be an interdependence between
the two; thus, it is useful to determine how well a model may
perform on a different fatigue type. The corresponding results
are presented in Table III, where the Fatigue column indicates
the testing set (i.e., Mental means the model was trained on
baseline/physical data and tested on the mental fatigue data).
Overall. neither model achieved state-of-the-art results and
had difficulty classifying a fatigue type it was not rained on.
Classifying mental fatigue when trained on physical fatigue
data produced the lowest accuracy, while classifying physical
fatigue when trained on mental fatigue data produced higher
accuracy. This result is attributed to physical fatigue impact a
person’s EMG and cardiac related signals more than mental
fatigue impacts them.

Additional analysis was performed by removing the EMG
signals and found that the random forest model decreased in
accuracy when classifying Physical fatigue (51%) and that the
support vector machine increased in accuracy (70%). A similar
trend occurred two both models when trained on physical and
tested on mental fatigue.

VI. DISCUSSION AND CONCLUSION

Two machine learning models were developed to classify
mental and physical fatigue as high or low using data collected
during a human-subjects experiment. Overall, both models
were able to classify a previously unseen person’s fatigue level
(validated using Leave-One-Subject-Out Cross-Validation) us-
ing cardiac, respiration, and electromyography information.
This result indicates that both fatigue components can be
incorporated into an intelligent system of systems in order to
help monitor a human’s performance level. The system may be
able to allocate a physically demanding task to a human if the
human has been classified as mental fatigued (or vice-versa).
Similarly, the system may invoke autonomy for the current
task in order to help mitigate the human’s fatigued state.

Physical fatigue was classified better than mental fatigue,
which is attributed to relying on physiological measures that
are more sensitive to physical fatigue. Typical state-of-the-art
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mental fatigue classifiers rely on EEG information; however,
these sensors can be intrusive and have low operator accept-
ability [18]. This is especially true during long-duration tasks
where fatigue effects are more likely to manifest.

Both machine-learning models were unable to classify fa-
tigue cross components (e.g., trained on physical and tested on
mental fatigue). This result indicates that there is a disassoci-
ation between the fatigue components meaning that a model
trained to classify one fatigue component may not achieve high
performance on a different component. This disassociation is
attributed to how the fatigue components impact a human’s
physiological signals. For example, a person’s resting heart-
rate may be 60 BPM, mental fatigue heart-rate may be 85
BPM, and physical fatigue heart-rate may be 110 BPM. A
fatigue classification model trained to classify mental fatigue
may perform well on the physical fatigue data due to a
larger increase in heart-rate from the the baseline (similar
to the results in Table III). However, going from physical
fatigue classification to mental fatigue classification is more
challenging due to the lower margin from the baseline. This
means that the current state-of-the-art classification algorithms
may have poor domain transferability and separate models are
needed for physical and mental fatigue classification.

The majority of the paper has focused on classifying mental
or physical fatigue, but the models can classify overall fatigue
as well. The LOSO CV results indicate that the developed
models achieved state-of-the-art performance to classifying
overall fatigue (both mental and physical fatigue). Although
the classification performance was high, the models have
poor diagnosticity [19] and cannot discern if a person is
fatigued due to mental or physical demands. Diagnosticity is
an important factor if an intelligent system of systems will
be deployed in task domains comprised of both mental and
physical demanding conditions.

The developed approach to fatigue classification does have
some limitations. First, collecting more data will provide a
more robust analysis of the algorithm’s capabilities. Especially
if the data is collected from more realistic scenarios, such
as industrial human-robot collaboration settings. Second, data
collected from the last 5-minutes of each fatigue condition
were considered to be high fatigue, which was verified by
the subjective ratings. However, the participants experience a
rise in fatigue levels throughout the conditions. A more gran-
ular approach (e.g., 5 fatigue classes) may permit intelligent
systems to understand if a person is likely to become highly
fatigued in the near future and adapt in order to prevent a high
fatigue state from ever occurring.

The developed human fatigue classification approach can
be characterized as a System of Systems architecture. Each
individual sensor (BioHarness and Myo) are measurement
systems that provide necessary preprocessed data to the fatigue
classification system. The classification system extracts rele-
vant features from the preprocessed data and uses a machine
learning model to predict fatigue levels. This system of sys-
tems architecture can then be incorporated into a larger system
that uses the fatigue classifications in its decision making

processes.
Overall, this paper presented a diagnostic approach to

fatigue classification by developing machine-learning models
that classify either mental or physical fatigue. Data from a
human-subjects study was used to validate the models using
two validation schemes. The results indicate that the developed
models are able to classify mental and physical fatigue for
an unseen participant. This result expands on the current
literature, as most works have either focused on mental or
physical and have not analyzed their algorithm’s population
generalizability. The developed models are a necessary step
towards to intelligent systems of systems that adapt to a
human’s internal state in order to optimize team performance.
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