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Abstract—In a human-robot team, robots can perceive the sur-
rounding environment states using various sensors, but typically
do not perceive the humans’ internal states (e.g., workload, fa-
tigue, and comfort). This work presents a human-aware system of
systems that incorporates human states into the robot’s decision-
making process to achieve more fluid human-robot team dynam-
ics and improve the overall team performance. The human-aware
system architecture employed a reinforcement learning paradigm
as the decision-making agent that incorporated task and human
state information. The architecture was validated on teaming data
from the NASA MATB-II task environment. The results suggest
that the learned action strategies were fine-tuned to the human.

Index Terms—Soft Actor Critic; Workload; Human Aware
System; Reinforcement Learning

I. INTRODUCTION

An effective human-robot team requires a robust under-
standing of the team goals, the environment, and the team-
mate’s states. Robots perceive their physical surroundings
using various sensors, such as LiDAR, depth, thermal, Radar,
ultrasonic, and cameras. However, the robot typically does
not consider the human teammates’ internal states, such as
workload, and fatigue. These states have a direct impact on
human performance; thus, influencing the overall team per-
formance. This can also impact robot performance indirectly
as the robots’ actions are largely influenced by humans in dif-
ferent forms of human-robot interaction such as teleoperation,
supervised and reprogrammed by humans, or as teammates
in human-robot collaboration [1], further affecting the overall
team performance. Team performance is especially critical in
high-stress multitasking environments (e.g., search & rescue
operations), where sub-optimal team performance may lead to
high failure costs. Physiological computing systems address
this gap by taking the human states and/or physiological data
into account to adapt their behavior in order to improve the
overall team performance [2].

Human states are typically estimated subjectively using
questionnaires [3]. A lot of studies have also estimated human
states from objective data, usually physiological (e.g., heart
rate, heart rate variability, respiration rate, electromyography,
galvanic skin response, speech features, noise level, posture,
electroencephalogram, and eye-tracking [4] [5]).

Human workload is used as the human state for validating
the human-aware system architecture presented in this work.

Critical high-stress multitasking environments with high fail-
ure cost such as NASA control room, piloting an airplane,
search & rescue operations require humans to deliver optimal
performance, considerably increasing the human workload.
This can decrease human performance due to an overload
workload state [6]. If human is underloaded, they may fail to
take any needed actions timely as they can become disengaged
from the system. The overall human workload is composed
of cognitive, auditory, speech, visual, fine motor, tactile, and
gross motor. The fine motor, tactile, and gross motor compon-
ents can be combined into physical workload [7].

This paper seeks to improve overall human-robot team per-
formance using a human-aware system of systems paradigm
that relies on reinforcement learning to model the various
trends and relationships between task states, human internal
states, and overall team performance. This paradigm was eval-
uated during a human subjects study using the NASA Multi-
Attribute Task Battery (MATB-II) [8], which is a supervisory
human-robot teaming system.

The key contributions are:
• A human-aware decision making system that determines

appropriate robot adaptations using task and human work-
load information.

• A reinforcement learning-based approach that can learn
trends between human states and team performance.

The rest of the paper is organized as follows: Section II
presents related work in the field of physiological computing
systems and adaptive automation. Section III presents the
human-aware system architecture and details its different sub-
systems in contrast to related work. Section IV describes the
human-subjects experiment used to validate the architecture.
Section V presents the experimental results and discusses the
findings. Section VI concludes this paper.

II. RELATED WORK

Human-Robot teaming research has typically focused on
human external states (e.g., position, velocity, head pose, arm
pose, and gaze), but recent efforts have incorporated human
internal states (e.g., emotions, workload, fatigue, and stress)
[9]. Human internal states can be subjectively estimated using
questionnaires (e.g., NASA Task Load Index for workload [3]).
However, such questionnaires record the human’s perceived



Figure 1. Human Aware system architecture for Human-Robot Teaming.

state in an intrusive manner and can be biased, limiting real-
world use. Changes in the human states can also be captured
using physiological data. Many studies have proposed methods
to estimate various human internal states using objective
measures (eg., physiological data), which makes the use of
human states feasible in real-time automation systems.

Liu et al. [10] presented an EMG patch to estimate muscle
fatigue during exercise, which can potentially be used in a
human-robot collaboration system to accommodate for re-
duced human physical capabilities due to muscle fatigue. M.
Ding and others [11] used a combination of EMG and joint
torque signals during the lift up by a nursing care robot to
estimate human comfort, however, it was a human factors
study with no adaptations based on the estimated comfort.
Rodrigues et al. [12] developed a stress estimation model using
ECG, EMG, and galvanic response features, which can be
used to assess human stress in high-stress environments. These
estimates have great potential to deliver information about
human sub-optimal states that can affect human performance,
and this work presents a method to effectively use these human
state estimates for robot automation decisions.

This work uses human workload to validate the presented
approach. Many researchers have proposed methods to estim-
ate human workload subjectively using questionnaires (e.g.,
the NASA-TLX [3]), or objectively physiological metrics [13]
or a combination of both using machine-learning algorithms
[14]. Human workload has been used to adapt and improve
human-robot team performance with rule-based approaches
while using only a subset of human’s workload state (i.e.,
cognitive workload) [15] [16]. The approach presented in this
study uses all the components of the human workload state
[17] and compares the reinforcement learning approach with
traditional rule-based adaptation schemes [18].

III. HUMAN AWARE SYSTEM ARCHITECTURE

A human-aware system of systems must have a mechan-
ism to estimate and incorporate human internal states into
its decision-making process. Figure 1 shows the developed
human-aware system of systems architecture, which incorpor-
ates a physiological data collection system, a human state as-
sessment system, and an adaptive environment handler system,

A. Physiological Data Collection System

The Physiological Data Collection system contains a sensor
suite comprising a Zephyr BioHarness (a chest harness device

used to collect heart rate, heart rate variability, respiration rate,
and posture), a decibel meter (measures surrounding noise
level), and a microphone. The system then sends processed
heart rate, heart-rate variability, respiration rate, posture, noise
level, speech pitch and intensity, and syllables per second
into the Lab Stream Layer (LSL) [19]. LSL is a system that
handles the networking, time-synchronization, and near real-
time collection and access to collected time series data (e.g.,
physiological data). The processed physiological data is then
used within the human state assessment system.

B. Human State Assessment App

The human state assessment system extracts relevant fea-
tures from the incoming and previous physiological data.
The resulting features are then used to detect the human’s
internal state. This work adapts a prior workload assessment
algorithm [4] to estimate the human’s workload state using
the mean, standard deviation, average gradient, and slope
of the physiological data with a 30-second window and 5-
second stride. The features are then fed into a neural network
consisting of three fully connected layers with rectified linear
unit activation functions and 64, 64, and 16 neurons in the
respective layers. The output layer contained 5 neurons with a
linear activation function representing the cognitive, physical,
speech, visual, and auditory workload estimates. An overall
workload estimate is computed by summing each component
estimate. The modified algorithm was validated on previously
collected data prior to incorporation into the system. The
resulting workload estimates are then sent back into the LSL
for use in the task environment handling system.

C. Task Environment Handler

An environment handler was used to handle the automation
decisions for the task environment. It was responsible for
accessing the human state estimates from the LSL layer,
determining environmental states, and using this information
to make automation decisions. These decisions were then
communicated to the task environment.

1) Task Environment: NASA MATB-II task environment
[8] depicted in Figure 2 was used to validate the presented
approach. The NASA MATB-II has been used to manipulate
human workload conditions and consists of four simultaneous
tasks: Tracking, System Monitoring, Resource Management,
and Communications. The Tracking task requires using a
joystick to maintain a crosshair on a target, where performance



Figure 2. The NASA Multi-Attribute Task Battery-II (MATB-II) Environment.

is measured as the root mean squared error (MSE) between the
target and crosshair’s respective centers. Four gauges and two
alarm lights were to be monitored and reset using a keyboard
when out of range (gauge is too high/low and the alarm light
was incorrect) in the System Monitoring. Performance was
measured as the response time to reset an out-of-range light or
gauge. The Resource Management task required maintaining
the fuel levels of tanks A and B between 2000 to 3000 units
(marked as the blue area) by using the keyboard to turn
appropriate fuel pumps on/off. The percentage of time both
tanks were in the range was used as the performance metric.
The Communications task required listening and responding
to audio commands. An example command is “NASA 504,
NASA 504, turn you NAV1 frequency to 116.500” to which
the operator responds “This is NASA 504, NAV1 set to fre-
quency 116.500” while executing the command. Performance
was measured as response time and failure rates.

Modifications were made to the NASA MATB-II environ-
ment that permitted automating each task, where automation
was near perfect. Individual task status and automation status
were communicated to the human operator using the status bar
on the left of Figure 2. Each task icon indicated if the task

needs attention (red), the task parameters are in range (grey),
or the task is currently automated (green).

2) Environment Handler: The environment handler is re-
sponsible for determining what tasks to automate based on
human and task state information.A reinforcement learning
paradigm was used due to its ability to learn policies in a
model-free fashion [20]. The task environment was defined as
a Partially Observable Markov Decision Process with states S,
actions A, transition T : S × A × S → [0, 1], set of possible
observations ω, observation space O : S ×ω, reward function
R : S × A × S → R, and discount factor γ = [0, 1]. Each
timestep was equivalent to 1 second, while selected actions
(automation) were for 5 seconds.

The Soft Actor-Critic (SAC) algorithm [21] was used to
decide which task to automate. The SAC algorithm interacts
with the environment by taking actions to explore the state
space and learn a policy to maximize the expected long-
term reward and entropy. This algorithm was chosen due
to its sample efficiency, as finding optimal policies online
from human data is computationally expensive. The algorithm
consists of an actor-network that learns the action policy and
selects an action given the current state. The value (V value-

Figure 3. Soft Actor Critic agents interacting with the NASA MATB-II environment.



based) and two critic (Q value-based) networks are used to
critique the action quality and suggest how to update the actor-
network’s policy distribution. Each network consisted of two
fully connected dense layers with 64 neurons in each layer.
The actor network has 2 neurons (for the mean and standard
deviation of the action) in the output layer while the critic and
value networks have 1 neuron each in the output layer with
a linear activation function. A discount factor of 0.99 and a
learning rate of 0.0003 with an Adam optimizer were used.

Two state spaces were explored with the SAC agent (see
Figure 3): (i) RL comprising of task and interaction related
information, and (ii) RLH augments the RL with human
workload information as shown below:

SRL(n) = {I1, I2, · · · , Ik, · · · , IK , an−1} (1)

SRLH(n) = {Wn, I1, I2, · · · , Ik, · · · , IK , an−1} (2)

Ik represents the interaction information for the kth task (time
since last human interaction in seconds), K represents the total
number of tasks, and an−1 represents the last agent action. Wn

represents the human workload information, which consists
of estimated overall workload wo, cognitive wc, auditory
wa, speech ws, visual wv , and physical wp workload values
computed by the workload assessment algorithm. The state
space is focused on interaction data than task-specific data to
make the approach independent of the nature of the tasks.

The continuous action space of the SAC agent is discretized
by binning the action value into K + 1 discrete actions
(including no automation). Individual reward functions rk are
designed for each task using their performance metrics where
undesirable performance is penalized and negative rewards are
awarded. To prevent the agent from automating all the time and
potentially disengaging the human from the system, human
idle time (ITh) is also penalized [22]. The overall reward
function for the SAC agent is obtained by taking the weighted
sum of the reward function of each task and human idle time:

r = w0 ∗ r0 + w1 ∗ r1 + · · ·+ wK ∗ rK + ITh (3)

Equal emphasis is given to each task by computing the
normalizing coefficient for the rewards of each task obtained
by an expert human operator (20+ hours of experience with
the environment) with no automation. The reciprocal of the
magnitude of the average reward of each task (i.e., wk =
1/|mean(rk)|) were used as the weights in Equation 3. Hence,
the range of the overall rewards is r ∈ [−4, 0]. As the agent
interacts with the environment, it learns and adapts its action
policy based on the trends between human states and team
performance to maximize the expected long-term reward.

IV. EXPERIMENTAL DESIGN

Nine participants (5 males and 4 females; average age
of 26.3) were recruited for the institutional review board-
approved study. The mixed design experiment manipulated
workload (underload (UL), normal load (NL), and overload
(OL)) as its within-subjects variable and the reinforcement
learning agent type (RL and RLH) as the between-subjects

variable. The experiment consisted of a 15-minute training
session, followed by a 52.5 minute trial with a rule-based
(RB) automation strategy [18] in order to permit comparing to
typical adaptive automation systems. The RB system invoked
automation for the least interacted task when the human was
overloaded and revoked all automation when underloaded.A
five-minute break then occurred to allow the participants to
rest prior to completing a 52.5 minute trial with either a RL
or RLH agent, assigned randomly. Each 52.5-minute trial
contained seven consecutive 7.5-minute workload conditions
(OL-UL-OL-NL-UL-NL-OL), such that participants experi-
ence every workload transition. Participants completed the
NASA Task Load Index (NASA-TLX) after each trial and
rated their comfort and trust levels on a Likert scale from 1
(little to no comfort/trust) to 7 (complete comfort/trust).

The SAC agents were pre-trained with expert human data.
The expert human data was collected while going through
the 52.5-minute session 6 times with the RLH agent. Each
participant started with the same pre-trained networks. The
agents were then trained online without exploration during
the RB trial in order to capture participant-specific data. The
first 29.5 minutes of the RL/RLH trial further trained the
agent and permitted the agent to explore the state space. The
performance was evaluated on the last 23 minutes of data
during which the RL and RLH agents were not being trained
to get a consistent behavior from the agents.

V. RESULTS & DISCUSSION

Data from 9 participants was collected to evaluate the
performance of the presented human-aware system. Two parti-
cipants’ data were excluded due to sensor failure. The average
estimated workload, rewards, and individual task performance
metrics are presented in Table I by agent type (RB, RL, and
RLH). The RL agent achieved the highest overall rewards,
but also the highest estimated workload. The RB approach
achieved lower rewards and the lowest workload. The RLH
agent maintained a lower workload level but achieved lowest
rewards. Overall, the RLH agent mitigated the underload and
overload workload states the best, where the most significant
improvement was observed in the overload condition. The RL
agent achieved higher performance than the RB and RLH
agent in the system monitoring and resource management
tasks, while the RLH agent performed better in the tracking
and communication task. RLH agent’s better performance in
the communication task may be due to its decision of automat-
ing communications task most frequently. RB’s performance
metrics lied between RL and RLH for all four tasks.

Automation and interaction times permit analysis of the
agent’s decisions in relation to the human’s decisions. The
RB approach automated the resource management task the
most, as shown in Table II. The RL agent automated the
system monitoring task the most with more evenly distributed
automation times amongst the tasks. Conversely, the RLH
agent automated the communications task the most and did not
automate each task evenly. The participants reported that the
communications task was the most difficult task. The higher



Table I
MEAN PERFORMANCE METRICS WITH RB, RL AND RLH ADAPTIVE AUTOMATION APPROACHES FOR THE HUMAN-ROBOT TEAMING ON

NASA-MATB ENVIRONMENT. BEST VALUES AMONG EACH TRIAL AND WORKLOAD CONDITION ARE BOLDED.

Workload Condition Trial Workload Rewards Tracking Error Gauges RT Lights RT Tanks in Range Comms RT
(pixels) (seconds) (seconds) (%) (seconds)

Underload (UL)
RB 17.79 -1.36 18.70 - 1.60 86.41 -
RL 18.93 -1.40 22.54 - 2.13 84.68 -

RLH 17.78 -1.30 19.95 - 2.07 87.52 -

Normal load (NL)
RB 27.26 -1.61 25.28 3.07 3.13 84.32 12.13
RL 33.49 -1.54 22.62 1.80 1.60 98.14 11.99

RLH 30.80 -1.86 23.18 4.72 2.82 84.33 13.57

Overload (OL)
RB 35.35 -2.82 27.44 4.17 4.10 73.98 12.84
RL 39.20 -2.30 28.51 2.82 2.96 87.00 12.43

RLH 32.67 -3.03 27.64 3.29 3.55 75.00 11.48

Overall
RB 26.80 -1.93 23.81 4.01 3.79 81.57 12.72
RL 30.54 -1.74 24.58 2.69 2.67 89.94 12.38

RLH 27.08 -2.06 23.59 3.51 3.30 82.28 11.98

overall workload induced by the communications task may be
due to the need for the human to pay attention to the audio
commands, change the radio and frequency using the mouse,
and verbally acknowledge the commands. This suggests that
the RLH agent may have picked up this trend to reduce human
workload, however it could not achieve rewards due to a much
more complex state space compared to the RL agent.

The RL agent’s average automation time was 917.32
seconds compared to the 637.12 seconds and 1198.75 seconds
for the RB and the RLH agent automation time. This
indicates that very high or very low automation time does not
imply better overall team performance. The interaction time
for the tracking task was the highest due to its continuous
nature. The participants for the RLH trial had fewer average
interactions with the system across all four tasks may indicate
participants relyied on the automation more.

These results shed light on a very critical issue regarding
the use of reinforcement learning for human-aware systems.
Despite having more information about the human workload,
the RLH may have achieved worse rewards due to the ad-
dition of the multi-dimensional human workload states which
makes the state space more complex to explore. This issue
may potentially be addressed by training the agent for a longer

period. Another possible solution is to make the state space
simpler by discretizing the workload components.

Table III shows the average NASA-TLX ratings recorded
after each trial of the experiment. These ratings span six sub-
scales: mental demand, physical demand, temporal demand,
performance, effort, and frustration. The participant weights
each scale in a pair-wise fashion, where the weights are used
to generate an overall workload rating. The overall perceived
workload with the RL agent is lower than the perceived
workload with the RLH agent, which is contrary to the
estimated workload based on the objective measures in Table
I. The results show that the perceived performance (same trend
as the rewards) biased the subjective ratings for the perceived
workload. The participants indicated that Mental Demand,
Performance, and Temporal Demand are the most important
workload contributors during RB and RL trials while Mental
Demand, Temporal Demand, and Frustration were the most
important workload contributors during RLH trials.

The participants rated their trust and comfortability after
each workload condition (∼ every 7.5 minutes) on a 7-point
Likert scale. The RL agent received the highest average trust
and comfort scores of 6.07 (0.79) and 5.78 (0.62), respectively.
These scores were followed by the RB approach with average

Table II
AUTOMATION AND HUMAN INTERACTION TIMINGS WITH RLH AND RL ADAPTIVE AUTOMATION APPROACHES. MOST AUTOMATED TASKS DURING

EACH WORKLOAD CONDITION ARE REPRESENTED BY BOLD VALUES.

Workload Condition Trial Automation Time (seconds) Interaction Time (seconds)
Tracking Sys.Mon. Res.Man. Comms. Tracking Sys.Mon. Res.Man. Comms.

Underload (UL)
RB 58.28 15.00 10.57 19.71 137.28 0.85 6.28 0.14
RL 89.33 110.33 80.00 23.00 114.33 6.66 12.00 0.00

RLH 60.75 87.50 100.50 156.00 147.75 0.75 4.75 0.00

Normal load (NL)
RB 60.57 45.57 59.71 50.85 136.42 7.14 6.71 9.14
RL 108.00 111.00 77.00 14.66 115.66 12.33 6.00 9.33

RLH 61.75 64.00 127.75 151.75 122.5 10.25 5.0 6.0

Overload (OL)
RB 77.57 29.85 146.28 63.14 96.57 37.57 1.57 39.57
RL 94.66 106.66 70.66 32.00 106.33 38.0 0.33 38.33

RLH 47.50 57.50 124.25 160.00 93.00 39.75 0.25 29.25

Overall
RB 196.42 90.42 216.57 133.71 370.28 45.57 14.57 48.85
RL 292.00 328.00 227.66 69.66 336.33 57.00 18.33 47.66

RLH 170.00 209.00 352.50 467.75 363.25 50.75 10.00 35.25



Table III
NASA-TLX RATINGS FOR DIFFERENT TRIALS ON NASA MATB-II.

RB RL RLH
Overall WL 67.8 (8.2) 49.9 (0.5) 71.2 (7.3)

Mental Demand 67.5 (20.7) 53.3 (13.1) 78.7 (21.5)
Physical Demand 40.6 (21.4) 40.0 (20.4) 45.0 (4.1)
Temporal Demand 77.5 (10.0) 43.3 (8.4) 81.2 (21.5)

Performance 43.7 (20.4) 20.0 (10.8) 60.0 (8.9)
Effort 74.3 (13.0) 68.3 (16.4) 71.2 (5.5)

Frustration 68.7 (18.9) 48.3 (11.7) 67.5 (5.4)

scores of 5.67 (1.03) and 5.78 (0.71) for trust and comfort,
respectively. RLH agent received the lowest average trust and
comfort scores of 5.50 (0.62) and 5.57 (0.80), respectively.
Mann-Whitney U tests indicated that no significant difference
existed between the agents for trust and comfort.

Trust and comfort are directly related to familiarity with
the system. Since the participants go through the RB trial
followed by RL or RLH , they are more familiar with the
system during the RL and RLH trial. Despite this, RLH
received the worst trust and comfort ratings. Trust and comfort
are impacted by factors such as perceived team performance
and the agent’s action explainability. The rule-based (RB)
approach is easily explainable as it is defined by a set of
simple rules, but SAC agent policies as not explainable. The
RL agent gained the highest trust and comfort scores despite
being unexplainable as its policy led to the highest rewards.

In hindsight, the discretization of continuous action value to
discrete action space may have contributed to the sub-optimal
performance of the RLH agent. For future work, this work
can be improved by using a discrete action space (such as
SAC Discrete). Other limitations of this work include the use
of the stochastic policy during the evaluation period. This
means that the agent may take random actions at times which
reduces explainable and performance. Future work will use
deterministic policies to better assess the system.

VI. CONCLUSION

This work presented a human-aware decision-making sys-
tem of systems that incorporates the human teammate’s in-
ternal states for its automation decisions. Different components
of the architecture were detailed and validated on the NASA
MATB-II multitask environment. The human workload was
estimated as the human internal state for this study; however,
other human states such as fatigue, stress, and comfort can
also be used. The Soft Actor-Critic reinforcement learning
algorithm was used to learn the trends and relationships
between the workload state and the overall team performance.
Developing a human-aware system architecture can help in
achieving a more fluent team collaboration by fine-tuning
the robot’s behavior to a human teammate’s internal states;
thus improving the team performance in dynamic multitask
environments. The presented approach can enable a robot
system to leverage human states and take the field of human
factors and human-robot collaboration one step further.
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