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Abstract—Mistakes in high stress and critical multitasking
environments, such as piloting an airplane and the NASA control
room, can lead to catastrophic failures. The human’s internal
state (e.g., workload) may be used to facilitate a robot teammate’s
adaptations, such that the robot can interact with the human
without negatively impacting overall team performance. Human
performance has a direct correlation with workload states; thus,
the human’s internal workload state may be leveraged to adapt
a robot’s interactions with the human in order to improve
team performance. A reinforcement learning-based paradigm
that incorporates human workload states to determine appro-
priate robot adaptations is presented. Preliminary results using
the proposed approach in a supervisory-based NASA MATB-II
environment are presented.

Index Terms—Soft Actor Critic; Workload; Human Robot
Interaction; Reinforcement Learning

I. INTRODUCTION

Humans working in high-stress and critical multitasking
environments (e.g., piloting an airplane, search & rescue op-
erations, and NASA control room) have to perform optimally
due to a high failure cost. These stressful environments may in-
crease the human workload considerably; causing an overload
state and decreasing task performance [1]. The human may
also become disengaged from the system if underloaded and
fail to take timely action when needed. Task performance of
such environments can be elevated by developing an adaptive
human-robot teaming system where the robot adapts to the
human’s behavioral and workload states.

Overall workload can be divided into five components:
cognitive, auditory, speech, visual and physical [2]. Physical
workload can be further sub-divided into the fine motor, tactile,
and gross motor [2]. Human workload can be subjectively
estimated using questionnaires (e.g., the NASA-TLX [3]) or
objectively estimated using physiological metrics [4]. Many re-
searchers have combined such metrics using machine-learning
algorithms to estimate human workload [5], [6].

Human workload has been used to adapt a robot’s or
system’s autonomy level to increase team performance [7], [8].
However, these systems only consider a subset of the human’s
state (i.e., cognitive workload) and use rule-based control
strategies (i.e., automate a task if the human is overloaded).
Reinforcement learning may be used to determine more ef-
fective human-robot teaming control strategies [9]; however,

these systems typically only consider the human’s input’s to
the system and current task states. This paper focuses on
augmenting a reinforcement learning agent’s observation space
with human workload state information in order to improve
overall team performance. Additionally, a system aware of
the human’s multidimensional workload state information may
permit individual adaptation strategies to emerge.

II. ALGORITHM

Reinforcement learning provides an approach where over
time, a robot teammate can learn how its actions impact the
human’s workload and team performance. This work employs
the Soft Actor-Critic (SAC) algorithm [10] to decide which
task is automated in an adaptive autonomy paradigm. The
Actor network, the two Critic networks, and the Value network
each consisted of 2 fully connected layers with 64 neurons
in each layer. The two critic networks and the Value network
consisted of 1 neuron in the output layer and the Actor network
used 2 neurons in the output layer (for the mean and standard
deviation of the Gaussian distribution to sample the action).
Relu and linear activation functions were used in the 2 fully
connected layers and the output layers, respectively.

SAC requires three major components: state, action, and
reward. Two state-space encapsulations are explored. RL
encompasses task and interaction information and RLH aug-
ments RL with human workload information, as shown below:

SRL(n) = {I1, I2, · · · , Ik, · · · , IK , an−1} (1)

SRLH(n) = {Wn, I1, I2, · · · , Ik, · · · , IK , an−1} (2)

Ik represents the interaction information for the kth task (time
since last human interaction in seconds), K represents the total
number of tasks, and an−1 represents the last agent action
taken. SRLH augments SRL with multidimensional workload
information Wn, which consists of estimated overall workload
wo, cognitive wc, auditory wa, speech ws, visual wv , and
physical wp workload values. These values are estimated every
5-seconds using a workload assessment algorithm trained in a
similar fashion as [11]. The incorporated algorithm uses a win-
dow size of 30 seconds consisting of the human’s heart rate,
heart rate variability, respiration rate, posture, syllables per
second, speech pitch, speech intensity, and surrounding noise



Figure 1. NASA Multi-Attribute Task Battery (MATB) Environment.

level. Features are then extracted and fed into a single deep
network with five output neurons representing the human’s
cognitive, auditory, speech, visual, and physical workload
states. These individual estimates are summed together to pro-
duce an overall workload estimate. Validating the incorporated
workload assessment algorithm is out of scope for this work.

The SAC agent’s continuous action space is discretized into
K+1 possible actions (including no automation), where Task
k is automated perfectly. A reward function rk is developed for
each individual task where poor task performance is penalized.
Human idle time [12] (ITh) is also penalized to prevent the
agent from automating each task and disengaging the human.
The total reward is computed by taking the weighted sum of
the task rewards and the human idle time:

r = w0 ∗ r0 + w1 ∗ r1 + · · ·+ wK ∗ rK + ITh (3)

The task weights were determined using average task rewards
earned by an expert human (who has 20+ hrs. experience of
working with the environment) ensuring that the task reward
values are comparable. Data was collected with the expert
going through the experiment without automation and the
reciprocals of the magnitude of the overall average reward
of each task (i.e., wk = 1/|mean(rk)|) were used as the task
weights. This helped normalize the rewards of each task with
respect to the expert’s performance.

III. EXPERIMENTAL DESIGN

Physiological, workload and task-related data were collected
from two participants (Age: 22 and 58) in the NASA MATB-
II task simulation environment [13] depicted in Figure 1. The
participants were required to perform four tasks simultan-
eously: Tracking, System Monitoring, Resource Management,
and Communications. The Tracking task consists of main-
taining a crosshair on a target using a flight joystick, which

impacts visual and physical workload. The performance metric
is the root mean squared error between the position of the
crosshair and the position of the target. The System Monitoring
task consists of monitoring and resetting two alarm lights and
four gauges using the keyboard, which increases the cognitive
and visual workload. Performance is measured using response
time to resetting an out-of-range light or gauge. The Resource
Management task requires maintaining the fuel level of tanks
A and B between the area marked by blue (between 2000 to
3000 units) by turning the appropriate pumps on/off using a
keyboard, which increases cognitive and visual workload. Per-
formance was measured as the percentage of time both tanks
were in range. The Communications task required listening to
audio commands: “NASA 504, NASA 504, turn you COM1
frequency to 128.450”. The participant has to make the desired
changes using the mouse and respond verbally: “This is NASA
504, COM1 set to frequency 128.450”, which impacts auditory
and speech workload. Response time to each request was used
to measure performance.

The NASA MATB environment was modified to allow
automation for each task, where automation was perfect. The
status bar on the left of Figure 1 was also added for automation
transparency. Each icon can turn red, grey, or green indicating
that the task needs attention, the task parameters are in range,
or the task is currently automated, respectively.

Workload was manipulated to be the independent variable
to create three within-subject conditions: underload (UL),
normal load (NL), and overload (OL). The participants were
required to go through a 15-minute training session to get
familiar with the task environment. This was followed by a
52.5 minute trial with a rule-based (RB) adaptive scheme
that uses workload and task interaction data to automate
the appropriate task, similar to the adaptive scheme used
in [14]. The experiment was concluded with another 52.5-



Table I
CHANGE IN MEAN PERFORMANCE METRICS OF RLH AND RL ADAPTIVE AUTOMATION APPROACHES FOR THE HUMAN-ROBOT TEAMING ON

NASA-MATB ENV. FROM BASELINES RB. BEST VALUES AMONG RLH AND RL IN EACH WORKLOAD CONDITION ARE REPRESENTED BY BOLD
VALUES.

Workload Condition Trial Workload Rewards Tracking Error Gauges RT Lights RT Tanks in Range Comms RT
(pixels) (seconds) (seconds) (%) (seconds)

Underload (UL) RLH 0.08 0.36 1.63 - 2.82 9.03 -
RL 2.62 -0.29 4.56 - 0.17 -4.16 -

Normal load (NL) RLH -1.27 -0.56 3.75 3.00 -1.25 -10.42 -0.55
RL 9.58 -0.02 1.11 -0.43 -0.13 0.7 -2.58

Overload (OL) RLH -6.42 -3.16 18.25 -1.00 0.75 -70.30 -1.79
RL 8.24 0 1.99 -0.27 -0.09 0 -0.3

Overall RLH -2.5 -1.15 7.82 -0.22 0.27 -23.56 -1.56
RL 6.8 -0.10 2.56 -0.32 -0.08 -1.17 -0.71

Table II
AUTOMATION AND HUMAN INTERACTION TIMINGS WITH RLH AND RL ADAPTIVE AUTOMATION APPROACHES. MOST AUTOMATED TASKS BY RLH

AND RL APPROACHES DURING EACH WORKLOAD CONDITION ARE REPRESENTED BY BOLD VALUES.

Workload Condition Trial Automation Time (seconds) Interaction Time (seconds)
Tracking Sys.Mon. Res.Man. Comms. Tracking Sys.Mon. Res.Man. Comms.

Underload (UL) RLH 9 66 71 275 26 2 3 0
RL 86 88 33 22 200 1 18 0

Normal load (NL) RLH 22 66 127 228 29 11 2 7
RL 143 74 55 22 148 7 13 11

Overload (OL) RLH 0 33 110 280 48 13 1 27
RL 99 91 66 11 121 47 0 49

Overall RLH 31 165 308 783 103 26 6 34
RL 328 253 154 55 469 55 31 60

minute session with either the RLH or RL approach as the
between-subjects independent variable. Each trial consisted of
seven consecutive 7.5-minute workload conditions (OL-UL-
OL-NL-UL-NL-OL) to ensure that each workload transition
was experienced. A 5-minute break occurred between the two
trials in order to allow the participant’s physiological signals
to return to their resting state. The NASA Task Load Index
(NASA-TLX) was completed after each trial to measure the
subjective human workload [3] along with questions focused
on trust and the participant’s experience.

The SAC agents for the RLH and RL approaches were
pre-trained with expert human interaction data. The interaction
data collected from the participant during the Rule-Based trial
was used to train the agent. The SAC agents are further trained
during the first 29.5 minutes of the RLH/RL trial. The agent
was not trained for the last 23 minutes of the RLH/RL trial so
that the SAC agent’s behavior is consistent. The data during
this time was used for the evaluation of each agent paradigm.

IV. RESULTS & DISCUSSION

Preliminary results are presented for two reinforcement-
learning adaptive automation approaches: SAC agent without
human workload states (RL) and SAC agent with human
workload states as part of the state space (RLH). Data from
two participants (one with RLH and one with RL approach)
was used to evaluate the two approaches. Table I shows
the difference in the collected performance metrics for the
RLH or RL approaches from their performances in the rule-
based (RB) trial. Overall estimated workload for the RLH

condition was lower than the workload during the respective
RB trial; however, the mean reward was worse. The overall
estimated workload for the RL condition was higher than
the workload during the RB trial, but the rewards were
similar. The RLH agent accumulated higher rewards during
the underload condition than the RL agent, which achieved
overall higher rewards. This result was not expected as the
workload states provide more information to the SAC agent
about the human teammate. Longer training times may be
needed, as the multi-dimensional human workload states make
the state space more complex.

Compared to RLH , the RL agent performed better in
the tracking task with lower tracking error (lower is better),
better in the system monitoring task with lower response time
for lights and gauges (lower is better), better in resource
management task with higher percent time when both tanks
were in range (higher is better) but worse in the Communica-
tions task with higher response times to the audio commands
(lower is better). An interesting trend regarding the automation
behavior of the RLH agent was observed. Table II presents the
automation and human interaction time by task and condition.
The RLH agent automated the communications task the most
throughout the trial. Accommodations made for the RLH
participant may have impacted the results, as the volume of
the audio commands was increased to the participant’s comfort
level. The high-volume audio commands were also picked up
by the microphone used to compute the speech features for
the workload estimates. This resulted in an abnormally high
speech workload; influencing the agent to automate the com-



munications task. Automating the communication task more
may be due to the agent using an individualized adaptation
strategy, but more data is needed to be certain.

The RLH agent automating the communications task the
most may have contributed to higher performance in the
communications task as compared to the RL agent. On the
other hand, the RL agent’s automation decisions are more
evenly spread out. The RL agent automated the tracking task
the most, followed by the system monitoring task. Overall,
the RLH agent automated at least one task for 1287 seconds
out of the 1380 seconds (23 minutes) of data whereas the RL
agent only automated tasks for a total of 790 seconds out of
the 1380 seconds of data. This difference in automation time
may be attributed to the RLH participant performing worse;
hence, the agent automating more. Both participants interacted
with the tracking task the most, due to it being the only task
that requires constant physical interaction when not automated.
However, it can be observed that the participant for the RLH
trial had fewer interactions with the system in general which
also might have contributed towards worse performance.

Since this is an ongoing study, data from more participants
will be collected to better analyze the performance of the two
proposed approaches. This is currently the main limitation
of this work as drawing conclusions from the data of two
participants (one with each approach) is not feasible. Another
potential limitation of this work is the lack of algorithm
training time. Additional training time may be needed for the
agent to learn the relationship between human workload states.

V. CONCLUSION

This work presented an exploratory study focused on eval-
uating a human-aware reinforcement learning paradigm for
adaptive human-robot teams. Two Soft Actor-Critic Reinforce-
ment Learning-based approaches were presented that incor-
porate human interaction information and workload states to
automate tasks in order to improve overall team performance.
The human-aware SAC agent may have learned trends that are
fine-tuned to the participant; however, more participant data
is needed. Developing a human-aware reinforcement learning
architecture may lead to robots or agents capable of tailoring
their policies to a human teammate’s internal state. Such an
architecture may lead to more fluent team collaborations and
improve team performance in dynamic task environments.
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