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Research Question Methodology Results

• In human-robot teams, robots can 
understand what is going on around them 
using various sensors.

• What about human behavior and human’s 
internal states? Environment
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I see that you are overloaded; 
I will help you.

I’m overwhelmed by 
all of this work.

Can we use human states such as workload, fatigue and comfort in a Reinforcement 
Learning paradigm to improve human-robot team performance?
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NASA Multi-Attribute Task Battery (MATB-II) – a high-stress multitask environment – was used to 
induce different levels of workload.
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Research Question Methodology Results
This work employs the Soft Actor-Critic (SAC) algorithm to decide which task is automated in an adaptive autonomy 
paradigm where a human and an agent work as a team in a multi-task environment.

Two state-space encapsulations are explored: • RL encompasses task and interaction information
• RLH augments RL with human workload information
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Research Question Methodology Results

Under Load
Normal

Load
Over Load Overall

RL 2.62 9.58 8.24 6.8

RLH 0.08 -1.27 -6.42 -2.5
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Under Load Normal Load Over Load Overall

RL -0.29 -0.02 -3.16 -0.1

RLH 0.36 -0.52 0 -1.15
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Key takeaways:

• The addition of human states resulted in a lower overall workload but with worse rewards.
• Most significant improvement in human workload was observed when the human was overloaded.
• Longer training times may be needed for the RLH agent, due to the more complex state space.
• The human-aware SAC agent may have learned action strategies that are fine-tuned to the human teammate; 

however, more data is needed to better analyze the agent’s performance.
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