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Research Question

In human-robot teams, robots can
understand what is going on around them
using various sensors.

What about human behavior and human’s
internal states?

I’m overwhelmed by
all of this work.

| see that you are overloaded;
| will help you.
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Human States

Can we use human states such as workload, fatigue and comfort in a Reinforcement
Learning paradigm to improve human-robot team performance?
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NASA Multi-Attribute Task Battery (MATB-II) — a high-stress multitask environment— was used to
induce different levels of workload.
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Methodology

This work employs the Soft Actor-Critic (SAC) algorithm to decide which task is automatedin an adaptiveautonomy
paradigm where a human and an agent work as a team in a multi-task environment.

Two state-space encapsulationsare explored: * RLencompasses task and interaction information
* RLH augments RL with human workload information
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Results
Change in Workload with respect to the Rule Change in Rewards with respect to the
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M RL 2.62 9.58 8.24 6.8 mRL -0.29 -0.02 -3.16 -0.1
®mRLH 0.08 -1.27 -6.42 -2.5 B RLH 0.36 -0.52 0 -1.15

Key takeaways:

 The addition of human states resulted in a lower overall workload but with worse rewards.

* Most significantimprovementin human workload was observed when the human was overloaded.

* Longer training times may be needed for the RLH agent, due to the more complex state space.

 The human-awareSAC agent may have learned action strategies that are fine-tuned to the human teammate;
however, more data is needed to better analyze the agent’s performance.
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