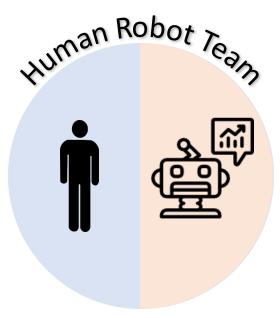
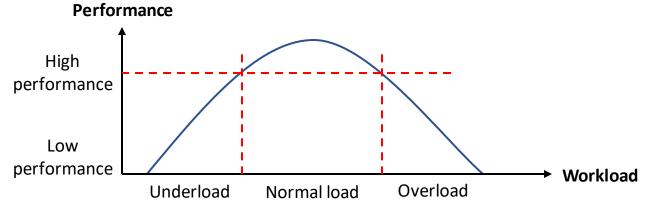
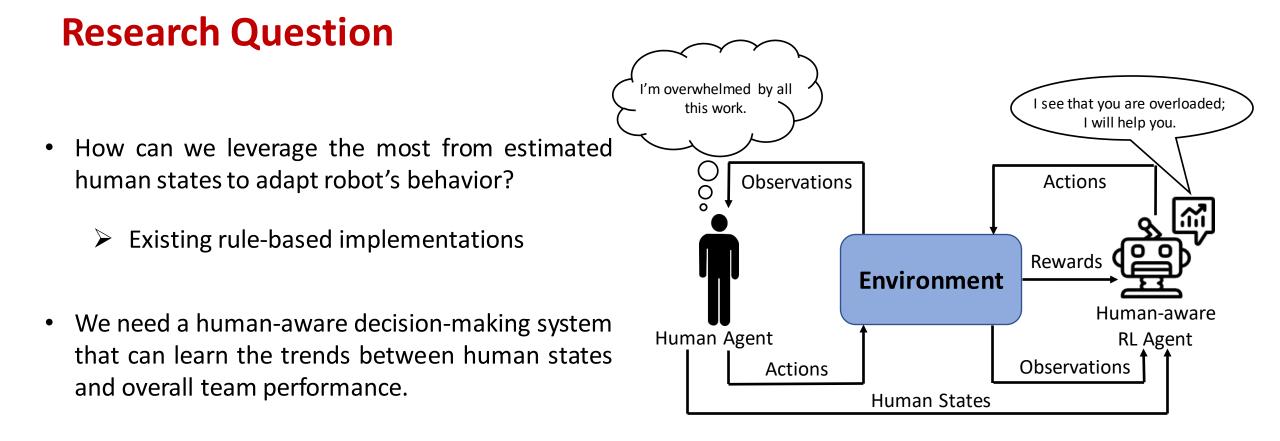


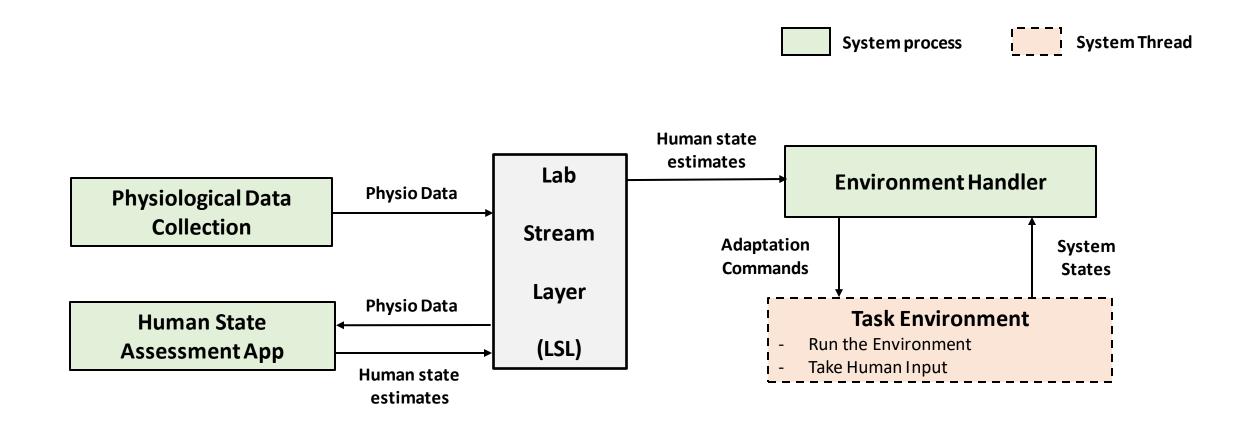
A Human-Aware Decision Making System for Human-Robot Teams


Saurav Singh Electrical and Computer Engineering Department Rochester Institute of Technology Rochester, NY, USA ss3337@rit.edu Jamison Heard Electrical Engineering Department Rochester Institute of Technology Rochester, NY, USA jrheee@rit.edu

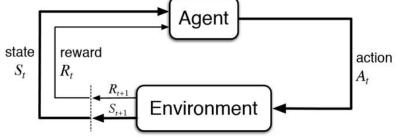


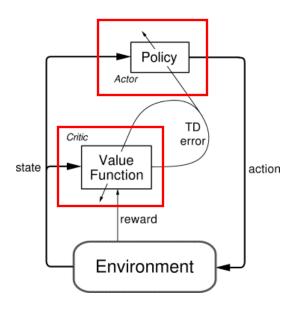

Motivation

- Robots can understand what is going on around them using various sensors.
- What about human behavior and human's internal states?
- Human physiological data changes with change in human internal states.
 - ➢ High heart rate under high workload



Can we use human states such as workload, fatigue and comfort in a Reinforcement Learning paradigm to improve human-robot team performance?

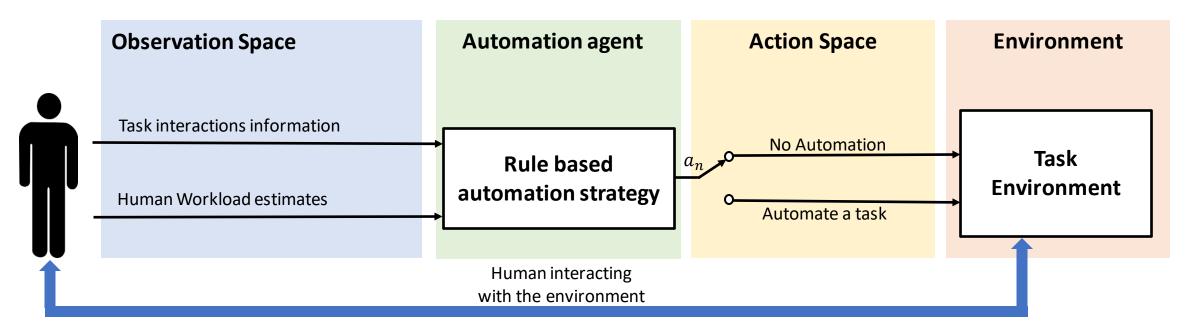

Human-Aware Decision-Making System Architecture



Reinforcement learning

- Formulated as a Markov Decision Process (MDP) with the tuple (S, A, T, R, γ) .
- The agent interacts with the environment with a known reward function and computes a policy that maximizes the rewards.

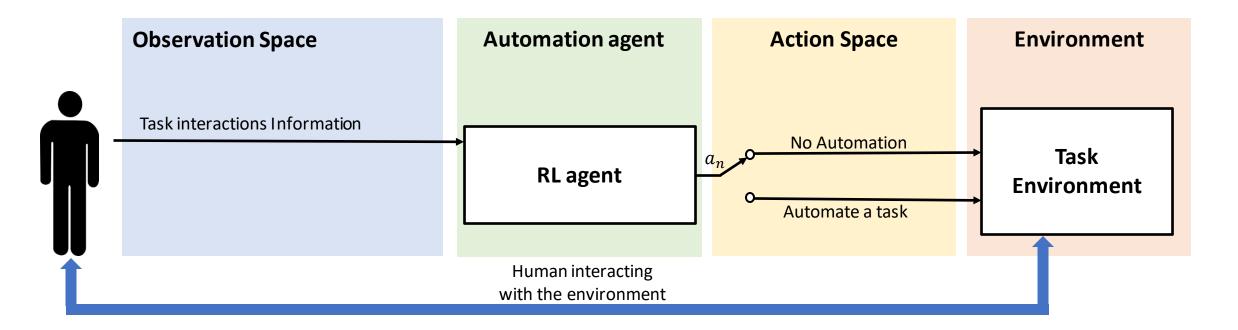
Soft Actor Critic Algorithm:


The algorithm is based on a maximum entropy RL where the objective is to find the optimal policy that maximizes the expected long-term reward and long-term entropy.

Automation Strategies - RB

Rule Based automation strategy (RB):

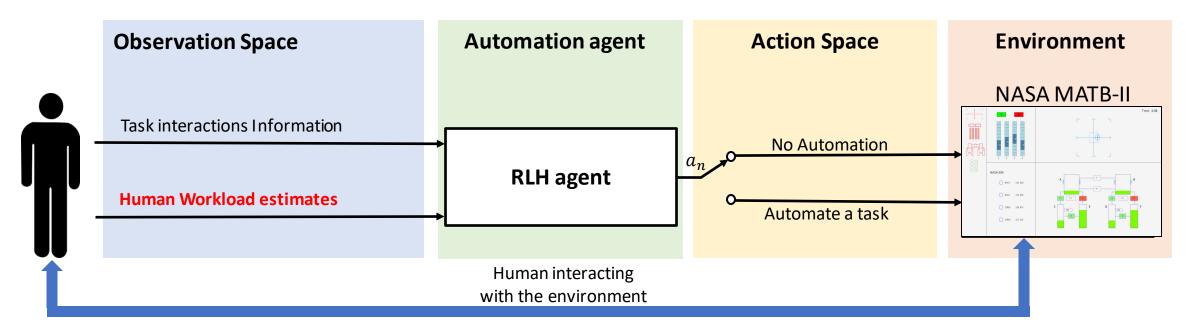
- If under loaded, take away all automation.
- If overloaded, automate the most neglected task.



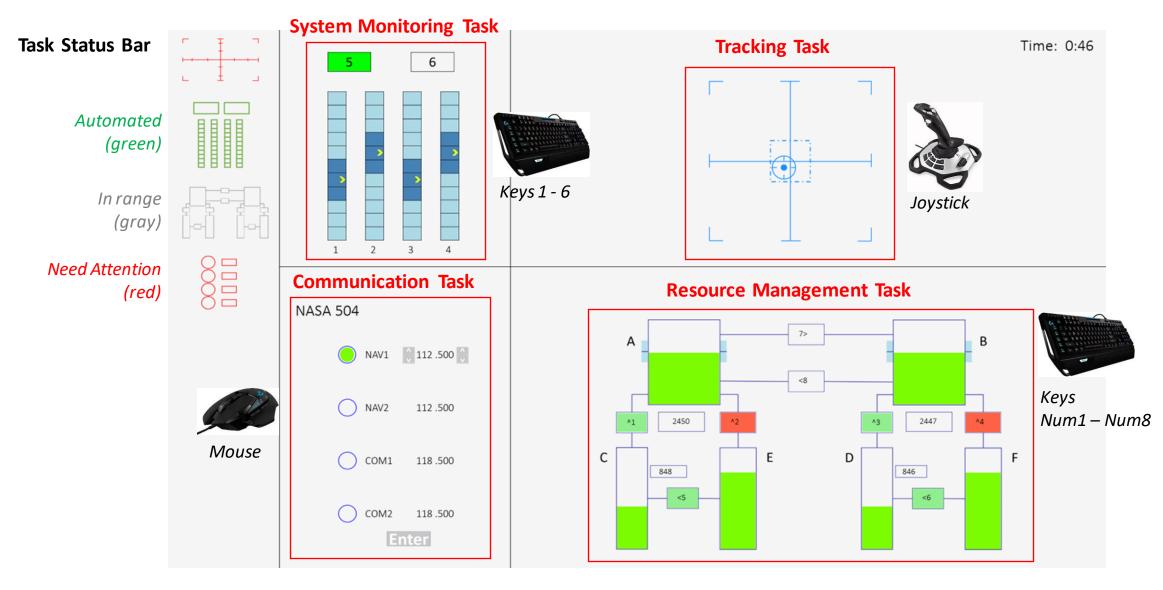
Automation Strategies - RL

Reinforcement Learning agent (RL):

Observation Space: • Task interaction information



Automation Strategies - RLH


Reinforcement Learning agent with Human states (RLH):

Observation Space: • Task interaction information

• Human Workload estimates

NASA Multi-Attribute Task Battery-II (MATB-II)

Reward Structure

 $r = w_0 * r_0 + w_1 * r_1 + w_2 * r_2 + w_3 * r_3 + Interaction_{Human}$

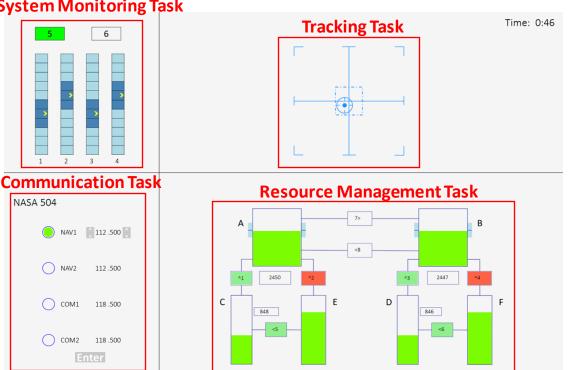
Bad performance was penalized.

System Monitoring (r_0) :

Response Time for acknowledging an alarm

Tracking Task (r_1) :

Error between the cross-head and the target


Communication Task (r_2) :

Response Time for following the audio command

Resource Management Task (r_3) :

Tanks out of range.

Human Idle time (*Interaction_{Human}*)

System Monitoring Task

Experimental Design

Recruited 9 participants (5 males and 4 females; average age of 26.3)

Mixed design experiment

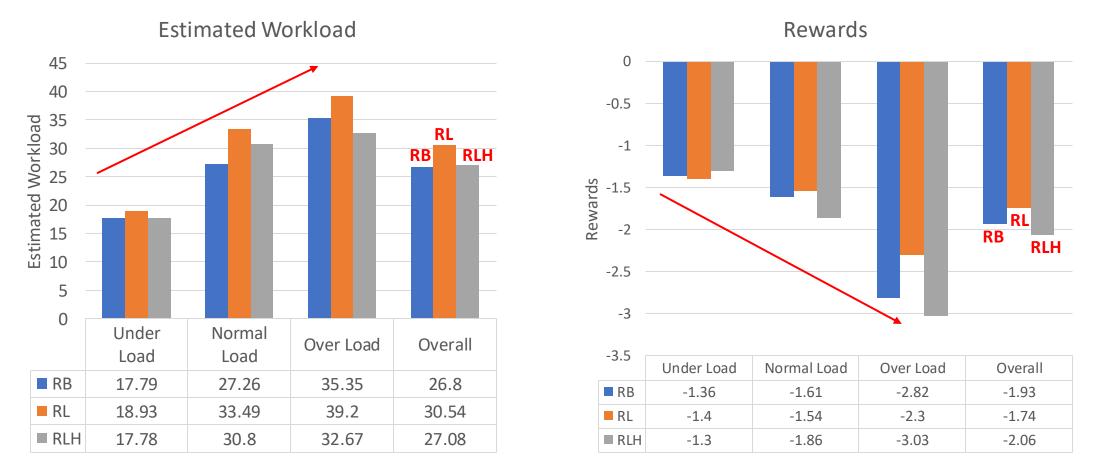
Independent variables:

- Workload Condition (within-subjects variable)
 - > Underload (UL)
 - Normal Load (NL)
 - > Overload (OL)

Dependent Variables:

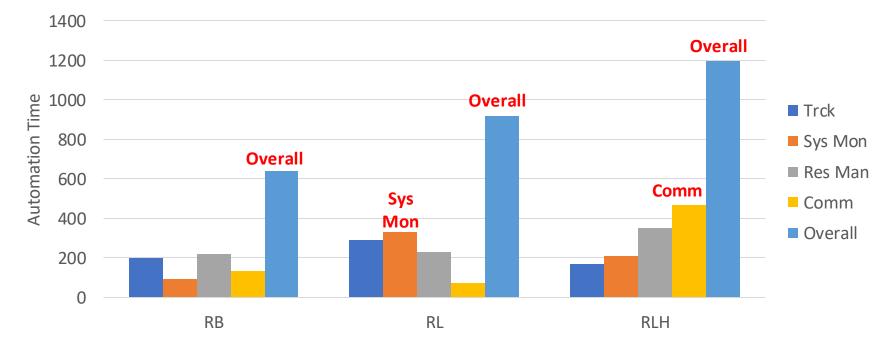
- Estimated Workload
- Rewards
- Individual Task Performance
- Automation Time

- Automation strategy type (between-subjects variable)
 - ➢ Rule Based (RB)
 - Reinforcement Learning agent (RL)
 - Reinforcement Learning agent with human states (RLH)


Experiment Sessions

	15 min	5 min	52.5 min	5 min	52.5 min
	Training Session	Break	Rule Based (RB)	Break	RL or RLH Trial
Participants completed the NASA Task Load Index (NASA-TLX) after each trial.		I			
Pre-training:Offline with expert human data.					
 Training: During the RB trial without exploration. During the first 29.5 minutes of RL/RLH with explore 	ration. 🔶				
Evaluation:During the last 23 minutes.					

• No training during evaluation.


Results

- The addition of human states resulted in a lower overall workload but with worse rewards.
- RLH agent may have picked up this trend to reduce human workload, however it could not achieve rewards due to a much more complex state space compared to the RL agent.

Results

Task Automation Time (seconds)

- The RL agent automated the System Monitoring task the most.
- The RLH agent automated the communications task the most.
- The RLH agent tends to automate most frequently.
- Very high or very low automation time **does not imply** better overall team performance.

Limitation

• The addition of human states resulted in a lower overall workload but with worse rewards.

• Addition of human states made the **state space more complex** to explore.

• Longer training times may be needed for the RLH agent learn an optimal action policy.

• **Discretizing human states** will also simplify the observation space for RLH agent.

Conclusion

- Presented a human-aware decision-making system that determines appropriate robot adaptations using task and human workload information.
- Presented a reinforcement learning-based approach that can learn trends between human states and team performance.
- Developing a human-aware system architecture can help in achieving a more fluent team collaboration.
- Improving the team performance in dynamic multitask environments.

Thank You!!

Any questions

Please feel free to reach out to us at ss3337@rit.edu

Appenndix

Workload Condition	Trial	Workload	Rewards	Tracking Error (pixels)	Gauges RT (seconds)	Lights RT (seconds)	Tanks in Range (%)	Comms RT (seconds)
	RB	17.79	-1.36	18.70	-	1.60	86.41	-
Underload (UL)	RL	18.93	-1.40	22.54	-	2.13	84.68	-
	RLH	17.78	-1.30	19.95	-	2.07	87.52	-
	RB	27.26	-1.61	25.28	3.07	3.13	84.30	12.13
Normal load (NL)	RL	33.49	-1.54	22.62	1.80	1.60	98.14	11.99
	RLH	30.80	-1.86	23.18	4.72	2.82	84.33	13.57
Overload (OL)	RB	35.35	-2.82	27.44	4.17	4.10	73.98	12.84
	RL	39.20	-2.30	28.51	2.82	2.96	87.00	12.43
	RLH	32.67	-3.03	27.64	3.29	3.55	75.00	11.48
Overall	RB	26.80	-1.93	23.81	4.01	3.79	81.57	12.72
	RL	30.54	-1.74	24.58	2.69	2.67	89.94	12.38
	RLH	27.08	-2.06	23.59	3.51	3.30	82.28	11.98

Workload		Automation Time (seconds)				Interaction Time (seconds)			
Condition	Trial	Tracking	Sys. Mon.	Res. Man.	Comms.	Tracking	Sys. Mon.	Res. Man.	Comms.
Underload (UL)	RB	58.28	15.00	10.57	19.71	137.28	0.85	6.28	0.14
	RL	89.33	110.33	80.00	23.00	114.33	6.66	12.00	0.00
	RLH	60.75	87.50	100.50	156.00	147.75	0.75	4.75	0.00
	RB	60.57	45.57	59.71	50.85	136.42	7.14	6.71	9.14
Normal load (NL)	RL	108.00	111.00	77.00	14.66	115.33	12.33	6.00	9.33
()	RLH	61.75	64.00	127.75	151.75	122.5	10.25	5.00	6.0
	RB	77.57	29.85	146.28	63.14	96.57	37.57	1.57	39.57
Overload (OL)	RL	94.66	106.66	70.66	32.00	106.33	38.00	0.33	38.33
	RLH	47.50	57.50	124.25	160.00	93.00	39.75	0.25	29.25
Overall	RB	196.42	90.42	216.57	133.71	370.28	45.57	14.57	48.85
	RL	292.00	328.00	227.66	69.66	336.33	57.00	18.33	47.66
	RLH	170.00	209.00	352.50	467.75	363.25	50.75	10.00	35.25

Results

NASA-TLX Ratings

	RB	RL	RLH
Overall WL	67.8 (8.2)	49.9 (0.5)	71.2 (7.3)
Mental Demand	67.5 (20.7)	53.3 (13.1)	78.7 (21.5)
Physical Demand	40.6 (21.4)	40.0 (20.4)	45.0 (4.1)
Temporal Demand	77.5 (10.0)	43.3 (8.4)	81.2 (21.5)
Performance	43.7 (20.4)	20.0 (10.8)	60.0 (8.9)
Effort	74.3 (13.0)	68.3 (16.4)	71.2 (5.5)
Frustration	68.7 (18.9)	48.3 (11.7)	67.5 (5.4)