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Abstract—Multimodal data provides information from dif-
ferent sensor types about the same underlying phenomenon
and enhances machine learning performance. However, neural
networks trained end-to-end on all the modalities tend to rely
mostly on one of the most dominant modalities. The black box
nature of neural networks makes it difficult to assess the reliance
of the network on various modalities. This work presents a novel
modality utilization metric that quantifies the network reliance on
different modalities. The proposed metric is validated on NTIRE-
21 (classification problem) and MCubeS (image segmentation
problem) datasets. The modality utilization metric contributes
towards the explainability of multimodal neural networks and
offers great utility in the field of multimodal data fusion.

Index Terms—data fusion, feature importance, multimodal,
modality utilization

I. INTRODUCTION

Information about the same phenomenon can be acquired
by different sensing modalities, which may capture comple-
mentary and redundant information. Each modality in such
multimodal data can give optimal information under various
conditions. Fields such as aerospace for aerial satellite imagery
[1]–[5], autonomous vehicles for image segmentation [6] (see
Figure 1), human factors research to estimate human states
[7] rely on data from multiple sensing modalities to observe
the same phenomena. Thus, there is a need to understand how
current multimodal deep-learning data fusion methods utilize
each modality during inference.

There are three primary fusion paradigm types: signal/data
level, feature level, and decision level [8]. Signal level fusion
combines the raw input data prior to inclusion in a machine-
learning model [9]. Feature-level data fusion occurs within
the machine-learning mode/network architecture [10] (e.g.,
see Figure1). Decision level fusion makes unimodal (single
modality) decisions which it then combines at the inference
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Figure 1. Multimodal Deep Network architecture used for material segment-
ation with MCubeS dataset [6].

layers [11]. This work mainly focuses on feature level fusion,
where end-to-end training is typically employed [12], [13].

Recent research has shown, however, that feature level
fusion may place most emphasis on a single (dominant)
modality, largely ignoring the rest. In other cases, a mismatch
in the optimization hyperparameters for each modality causes
end-to-end multimodal trained networks to perform worse
than their unimodal counterparts [13], [14]. Thus, knowing
to what extent the network utilizes each of the available data
modalities provides explainability on the network’s operation.
This information can help us modify the network to best
leverage all modalities or decide to remove lowly utilized
modalities, since sensing across multiple modalities comes
at some implementation cost/complexity. Works such as Q.T.
Truong et al. [15] assessed modality importance by examining
the unimodal performances. However, unimodal performances
are not necessarily indicative of the network’s modality util-
ization in the multimodal case, as discussed in Section III-C.
Therefore, there is a clear gap in the literature on network
reliance and modality utilization for multimodal data.

The main research question that we address in this paper
is: How can we quantify the utilization of a modality by the
network? To that end, we introduce a new modality utilization
(MU) metric. This metric was inspired by the permutation



feature importance metric [16], [17], which quantifies how
much a network uses a single feature. Feature utilization
metrics are infeasible for fusion of multi-modal images, due to
the use of sophisticated convolutional neural networks. Thus,
this work expands a permutation-based feature utilization
approach to a multi-modal data fusion domain.

The proposed modality utilization metric is experiment-
ally assessed on NTIRE-21 (a classification problem) [3]
and MCubeS (an image segmentation problem) [6] datasets.
The results show that the proposed metric can quantify the
network’s reliance on a modality. This contributes to the
explainability aspect of a multimodal machine learning model.
It also advances the field of data fusion by giving researchers a
tool to evaluate a network’s reliance on various modalities. The
rest of the paper is organized as follows: Section II proposes
the modality utilization metric (MU). Section III presents the
experimental design, datasets used, experimental results, and
discusses the findings, and Section IV concludes this paper.

II. METHODOLOGY

Inspired by permutation feature importance [16] [17], the
presented method determines modality utilization for a mod-
ality MUi. Given a trained network model Fθ and test dataset
Dtest with M input modalities, modality utilization MUi

is computed by breaking the association between the input
modality Mi and the output label Y and calculating the
resulting loss on the testing set.

The association between a modality Mi and the output label
Y is broken by permuting or shuffling the corresponding mod-
alities’ (Mi) samples randomly, while keeping the remaining
modalities’ (Mj , j ̸= i) samples the same, as shown in figure
2. Let independent samples from the testing dataset of the
form Dtest = (Y,X1, X2, · · · , XM ) be
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Let the loss of model Fθ be Ltest during inference with dataset
Dtest and Li during inference be with the permuted dataset
Di, where samples of ith modality (X(a)

i , X(b)
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The modality utilization of the ith modality (MUi) for the
model Fθ can be computed by observing the error between the
loss during inference with the original dataset Dtest and the
permuted dataset Di. Modality utilization of the ith modality
(MUi) is then defined as:

MUi = L1 − Ltest. (4)

Algorithm 1 formalizes method to compute modality utiliz-

Figure 2. Permuting/shuffling samples of a modality Mi in the dataset to
break the association between input modality Mi and the output label Y .

ation (MU ), which takes a given trained network model Fθ

and a multimodal test set Dtest. Line 1 computes the model
prediction loss Ltest (eq. 2). Then, for each modality Mi,
permute corresponding test set samples Dtest (Line 3) and
compute the resulting prediction loss (Line 4). Then, Line 5
computes the modality utilization (MUi) using eq. 4. Once
all of the MUs have been determined, Line 6 computes the
normalized percentages of each MUi.

Algorithm 1: Compute Modality Utilization
Initialize network model Fθ, and multi-modal test set
Dtest;

Compute model prediction loss Ltest, Eq. 2;
for each modality Mi do

Randomly permute the samples of modality Mi

while keeping the modalities Mj , j ̸= i
unchanged, Eq. 1;

Compute model prediction loss Li with permuted
modality Mi, Eq. 3;

Compute loss-based Modality Utilization (MUi)
using Eq. 4, MUi = Li − Ltest;

end
Compute normalized percentages for each MUi.

III. EXPERIMENTS

A. Datasets and Networks

The proposed modality utilization method is validated on
two datasets: (i) NTIRE-21 image classification dataset [3],
and (ii) MCubeS material segmentation dataset [6].

The NTIRE-21 dataset is an aerial imagery dataset that
consists of two modalities, Electro-optical (EO) and Synthetic
Aperture Radar (SAR). The dataset presents a classification
problem with 10 classes. The EO modality contains more
information on a clear day, while the SAR modality is more
useful on a cloudy day as SAR can penetrate clouds while EO
cannot [3]. This presents an interesting problem as a trained
network tends to rely mostly on the EO modality. The network
used for the NTIRE-21 dataset consists of two branches
(one for each modality) with ResNet18 as the backbone of
the feature extractor. The extracted features are fused by
concatenating the features from each modality (feature level
fusion) and fed to the decision layer which consists of fully
connected layers for class prediction. The network was trained
using Adam optimizer with 0.001 as the learning rate over
250 epochs and the model with the best test performance is



Table I
PERFORMANCE AND MODALITY UTILIZATION (MU) FOR THE TWO DATASETS COMPUTED USING ALGORITHM 1.

Dataset Experiment Modality Performance Modality Utilization (MU) (%)
Accuracy (%) EO SAR

NTIRE-21
Unimodal EO 97.5 100.0 -
Unimodal SAR 84.9 - 100.0

Multimodal EO-SAR 97.8 99.59 0.40
mIoU RBG AoLP DoLP NIR

MCubeS

Unimodal RGB 0.318 100.0 - - -
Unimodal AoLP 0.266 - 100.0 - -
Unimodal DoLP 0.262 - - 100.0 -
Unimodal NIR 0.270 - - - 100.0

Multimodal RGB-AoLP-DoLP-NIR 0.374 34.5 19.0 30.9 15.6
Multimodal AoLP-DoLP-NIR 0.351 - 67.3 21.0 11.7

used to validate the proposed MU metric. Since the dataset
is imbalanced, 624 samples (number of samples in the class
with the least number of samples) were used from each class
where 524 samples from each class were used as the training
set and 100 samples from each class were used as the test set.

The MCubeS dataset is a material segmentation dataset with
street scenes that consist of four modalities: colored image
(RGB), angle of polarization (AoLP), degree of polarization
(DoLP), and near-infrared (NIR). The dataset presents an
image segmentation problem with 20 possible categories.
Since RGB does not provide enough information to predict the
material of a surface, other modalities enhance the prediction
capabilities of a network. The network used for the MCubeS
dataset consists of four branches (one for each modality)
with UNet as the backbone of the feature extractor. The
extracted features are fused by concatenating the features from
each modality (feature level fusion) and fed to the decision
layer which consists of 2-d convolutions layers for image
segmentation. The network was trained using SGD optimizer
with 0.05 as the learning rate and 0.9 as the momentum over
1000 epochs and the model with the best test performance
is used to validate the proposed MU metric. MCubeS dataset
consists of 500 samples where 302, 96, and 102 samples are
in the training set, validation set and test set, respectively.

B. Results

The network’s performance is observed first with each
modality separately and then using multiple modalities. The
classification accuracy and modality utilization for the NTIRE-
21 dataset is recorded. The mean intersection over union
(mIoU) for image segmentation and the modality utilization
for the MCubeS dataset is recorded. The unimodal network
performances serve as a baseline for the experiments. The
results in Table I show that for the multimodal experiment
with the NTIRE-21 dataset, the network learned to rely on the
EO modality (the dominant modality) with 99.59% modality
utilization. The modality utilization for the MCubeS, however,
indicates that the network uses information from multiple
modalities, favoring RGB (34.5% MU) and DoLP (30.9%
MU) the most. The MCubeS network is also trained without
the RGB modality to see the effects of removing the most

utilized modality and a drop in performance (mIoU) from
0.374 to 0.351 is observed.

The sensitivity of the proposed modality utilization method
is further studied by degrading the quality of the dominant
modality (EO) in the NTIRE-21 dataset. This was achieved by
blacking out EO images with a probability of 0%, 25%, 50%,
75%, and 100%. The network is trained from scratch each
time while modality utilization and classification accuracy are
observed. Figure 3 shows that the network mostly utilizes EO
with 0% blackout (also shown in Table I). As the EO blackout
increases, the network starts to utilize SAR modality more and
more until it only relies on SAR at 100% EO blackout. A
drop in the classification accuracy is also observed with an
increase in EO blackout, which was expected. This validates
the utility of the proposed modality utilization metric as it
gives more insight into what modality the network is relying
on the most under different conditions and contributes towards
the explainability of the black box neural networks.

Figure 3. The Modality Utilization Scores and Classification Accuracy by
EO Modality Blackout %.

Figure 4. Modality utilization (MU) with 50% EO blackout by training epoch
on the NTIRE-21 dataset.



The evolution of the modality utilization metric while train-
ing the network on the NTIRE-21 dataset was also observed.
The utilization of EO and SAR modalities is observed with
nearly 50% EO blackout in Figure 3. Figure 4 shows the
evolution of MU with 50% EO blackout while training the
network. The proposed modality utilization method helps in
tracking the network reliance on the different modalities. It
is a useful metric to influence the training process and favor
network reliance on one or the other modality.

Redundant information in multiple modalities can affect the
network reliance on different modalities. The proposed MU
metric allows us to study the effects of redundant information
in multiple modalities. A network was trained on NTIRE-21
dataset with two duplicated EO modalities instead of EO and
SAR modalities. This ensures the redundant information in
the two modalities. The results show that in such a scenario,
the modality utilization is heavily influenced by the network’s
random initialization, shown in Figure 5.

Figure 5. Effects of different network initialization with perfect information
redundancy on modality utilization (MU) and classification accuracy.

C. Discussion
Computing modality utilization can help with the explain-

ability of a multimodal fusion network and help in assessing
the model reliance on certain modalities. We observe that, as
expected, the modality utilization of the dominant modality
decreases as the blackout in the dominant modality increases.
This was validated by adding blackouts to the EO modality
in NTIRE-21 dataset (see Figure 3). As the probability of
blackout in EO (dominant modality) is increasing, the MU of
EO is decreasing. This suggests that the proposed MU metric
is able to give an estimated measure of the true utilization of
a modality by a network.

The unimodal performances of the network give an insight
into how much information that modality contains compared to
other modalities. Higher performance by a modality indicates
the modality contains information more appropriate for classi-
fication/segmentation. According to Table I, the modality with
the highest unimodal performance will also have the highest
MU value in the multimodal setting. However, this is not
true in the MCubeS dataset. That is, modality performance
in unimodal setting does not necessarily reflect the modality
importance/utilization in a multimodal setting.

IV. CONCLUSIONS

In conclusion, this paper presented a modality utilization
metric for multimodal data fusion applications which was in-

spired by permutation feature importance. The proposed metric
was validated using NTIRE-21 (classification problem) and
MCubeS (image segmentation problem) datasets. The behavior
of the metric was studied by carefully designed experiments
where noise/blackouts were added to the dominant modality
and expected MU behavior was observed. The future work will
consist of using the proposed metric to influence the training
of a multimodal network to favor network reliance on one or
more modalities. The modality utilization metric offers great
utility in fields such as autonomous driving with multimodal
data fusion and contributes towards the explainability of the
black box multimodal network.
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