

on Artificial Intelligence Measuring Modality Utilization in Multi-Modal Neural Networks

Saurav Singh¹, Panos P. Markopoulos², Eli Saber³, Jesse D. Lew⁴, Jamison Heard⁵

^{1,3,5}Rochester Institute of Technology, ²The University of Texas at San Antonio, ⁴New York University

ABSTRACT

Multimodal data can boost machine learning performance

Problem: Multimodal neural nets seem to overly rely on dominant modality; we cannot

METHOD

- Method inspired by permutation feature importance [1][2] to compute modality utilization MU_i for each modality
- **Procedure:** Break the association between input modality M_i and output label Y by permuting/shuffling modality M_i samples

ABLATION STUDIES ON NTIRE-21 DATASET

Rochester Institute

of Technology

Sensitivity of the modality utilization metric is studied by degrading the quality of the dominant modality (EO)

measure / verify

Proposed solution:New modalityutilization metric that quantifiesnetworkreliance on individual modalities

Tests: NTIRE-21 (classification), MCubeS (segmentation) datasets

Observed Benefit: Metric indeed increases explainability in multimodal neural networks. Significant potential impact in multimodal data fusion across various application

INTRODUCTION

End-to-end multimodal fusion issues:

• Overemphasis on a single, dominant

randomly, leave other modalities M_j , $j \neq i$ unchanged

Figure 2: Permuting/shuffling samples of a modality M_i in the dataset to break the association between input modality M_i and the output label Y

Algorithm 1: Compute Modality UtilizationInitialize network model F_{θ} , and multi-modal test set \mathcal{D}_{test} ;Compute model prediction loss L_{test} ;for each modality M_i doRandomly permute the samples of modality M_i while keeping the modalities M_j , $j \neq i$ unchanged;Compute model prediction loss L_i with permutedmodality M_i ;Compute loss-based Modality Utilization (MU_i) using $MU_i = L_i - L_{test}$;end

Figure 3: MU and Classification Accuracy by EO Modality Blackout %.

Evolution of the modality utilization metric while training the network with 50% EO blackout.

modality

Hyperparameter mismatch across modalities

Understanding the extent of network's use of each modality can provide insight into network's operation.

Compute normalized percentages for each MU_i .

RESULTS

Proposed modality utilization metric experimentally assessed on:

- NTIRE-21 (a classification problem)
- **MCubeS** (an image segmentation problem).

Table I: Performance and modality utilization for the NTIRE-21 dataset

Experiment	Modality	Performance	Modality Utilization (MU) (%)		
		Accuracy (%)	EO	SAR	
Unimodal	EO	97.5	100.0	-	
Unimodal	SAR	84.9	-	100.0	
Multimodal	FO SAR	07.8	00 50	0.40	

Epoch

Figure 4: Modality utilization with 50% EO blackout by training epoch.

- Redundancy in modalities impacts network reliance
- Network trained with duplicated EO modalities instead of EO and SAR
- Modality utilization heavily influenced by network's random initialization

Figure 5: Effects of different network initialization with perfect information redundancy on modality utilization and classification accuracy.

Figure 1: Multimodal Deep Network architecture.

How can we quantify the utilization of a modality by the network?

 Introduced modality utilization (MU) metric.

Expands permutation feature importance approach to a multi-modal fusion domain.

Experiment	Modality	Performance	Modality Utilization (MU) (%)			
		mIoU	RBG	AoLP	DoLP	NIR
Unimodal	RGB	0.318	100.0	-	-	-
Unimodal	AoLP	0.266	-	100.0	-	-
Unimodal	DoLP	0.262	-	-	100.0	-
Unimodal	NIR	0.270	-	-	-	100.0
Multimodal	RGB-AoLP-DoLP-NIR	0.374	34.5	19.0	30.9	15.6
Multimodal	AoLP-DoLP-NIR	0.351	-	67.3	21.0	11.7

CONTACT INFORMATION

Saurav Singh ss3337@rit.edu Panos P. Markopoulos panagiotis.markopoulos@utsa.edu

Eli SaberJesse D. Lewesseee@rit.edujl8429@nyu.edu

Jamison Heard jrheee @rit.edu

[1] L. Breiman, "Random forests," *Machine Learning*, vol. 45, pp. 5–32, 2001.

[2] A. Fisher, C. Rudin, and F. Dominici, "All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously," Journal of machine learning research: JMLR, vol. 20, 2019.

This material is based upon work supported in part by the Department of Defense under award HM04761912014 and the Air Force Office of Scientific Research (AFOSR) under award FA9550-20-1-0039.

Table II: Performance and modality utilization for the MCubeS dataset