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ABSTRACT METHOD ABLATION STUDIES ON NTIRE-21 DATASET

Multimodal data can boost machine learning <« Method inspired by permutation feature importance [1][2] to <« Sensitivity of the modality utilization metric is studied by
performance compute modality utilization MU; for each modality degrading the quality of the dominant modality (EO)

Problem: Multimodal neural nets seem to Procedure: Break the association between input modality M; and
overly rely on dominant modality; we cannot output label Y by permuting/shuffling modality M; samples
measure / verify randomly, leave other modalities M;, j # i unchanged
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Figure 2: Permuting/shuffling samples of a modality M; in the dataset to break _ _ o _ _ .
the association between input modality M; and the output label ¥ * Evolution of the modality utilization metric while training the

Observed Benefit: Metric indeed Increases network with 50% EO blackout.

explainability in multimodal neural networks. Algorithm 1: Compute Modality Utilization
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Compute model prediction 10ss L;est:

INTRODUCTION for each modality M; do
Randomly permute the samples of modality M;

End-to-end multimodal fusion issues: while keeping the modalities M, j # i
unchanged: 4
Overemphasis on a single, dominant Compute model prediction loss L; with permuted o s 100 150 200 250
modality modality M;: POt
Compute loss-based Modality Utilization (M U;)
Hyperparameter mismatch across using MU; = L; — Liess: Redundancy in modalities impacts network reliance
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Compute normalized percentages for each MU;. and SAR
Understanding the extent of network's use of . Modality utilization heavily influenced by network's random

each modality can provide Insight Into RESULTS initialization
network's operation.

Proposed modality utilization metric experimentally assessed on: 100
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Figure 4: Modality utilization with 50% EO blackout by training epoch.

 NTIRE-21 (a classification problem)

« MCubeS (an image segmentation problem).
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Table I: Performance and modality utilization for the NTIRE-21 dataset = :"Cli-m

Material | |
Segmentation Experiment Modality Performance Modality Utilization (MU) (%) 10 =20 30 7 aa

Accuracy (%) EO SAR | |  Fold | | |
—>| UNet nimodal EO 07 5 100.0 _ Figure 5: Effects of different network initialization with perfect information
Unimodal SAR R4 9 100.0 redundancy on modality utilization and classification accuracy.

Multimodal | EO-SAR 97.8 99.59 0.40
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How can we quantify the utlization of a Table II: Performance and modality utilization for the MCubeS dataset

modality by the network?
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