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ABSTRACT
With the development of industry 4.0, more collaborative robots
are being implemented in manufacturing environments. Hence,
research in human-robot interaction (HRI) and human-cobot in-
teraction (HCI) is gaining traction. However, the design of how
cobots interact with humans has typically focused on the general
able-bodied population, and these interactions are sometimes inef-
fective for specific groups of users. This study’s goal is to identify
interactive differences between hearing and deaf and hard of hear-
ing individuals when interacting with cobots. Understanding these
differences may promote inclusiveness by detecting ineffective in-
teractions, reasoning why an interaction failed, and adapting the
framework’s interaction strategy appropriately.

CCS CONCEPTS
• Human-centered computing → Interaction paradigms; •
Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
Collaborative robots (cobots) that share space and interact with
a human teammate [20] are becoming more prevalent in manu-
facturing as we move towards Industry 4.0 (the next industrial
revolution using the internet of things) [16]. Cobots are able to in-
crease productivity and efficiency while lowering production costs
[4]. Moreover, cobots can improve working conditions for employ-
ees by taking on repetitive tasks such as assembly or heavy labor
tasks [18]. However, it remains unclear which factors facilitate or
hinder the successful integration of industrial cobots [15].

Trust directly influences a person’s willingness to interact with
a robot [6]; therefore, it is necessary to understand trust in cobot
settings [26]. Without the appropriate level of trust, humans may
disuse (under-reliance), or misuse (over-reliance) the robot [26].
Furthermore, studies suggest that the use of robots can improve
performance and time-to-completion while increasing usability and
productivity [24, 28]. Regarding perceived workload, we have yet
to fully understand how and if this is affected by the use of cobots.
However, some studies suggest that there is no negative impact
on humans’ perceived workload when collaborating with robots
[10, 11]. More extensive and robust research is needed to understand
how to best consider all these teaming factors when designing
effective human-robot collaboration (HRC) teaming paradigms.

Prior research works seek to understand these teaming factors
by running human-subject studies with over-represented individu-
als, such as hearing individuals. However, these factors and their
respective meanings may diverge with varying populations with
different cultural backgrounds. For example, a human continuously
glancing at a robot’s end-effector may be an indication of mistrust.
However, a deaf individual may need to visually check the robot to
maintain an appropriate awareness level, while a hearing individ-
ual can rely on the auditory perception of sounds to recognize the
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robot’s current position. Broadening representation by including
deaf and hard of hearing (D/HoH) individuals within experimental
paradigms may provide more insight into how human-robot teams
function and how their dynamics change over time. Understanding
these aspects is especially critical within the manufacturing domain,
as this is the largest sector that deaf individuals work in ( 15.7% [5]).
Approximately 18% of all manufacturing employees have hearing
difficulties, and about 20% of noise-exposed tested manufacturing
workers have a material hearing impairment [1]. This paper’s goal
is to examine if there are differences between D/HoH and hearing
individuals in a simulated manufacturing environment using the
Baxter Robot. We detail a mixed-designed study and subsequently
present results. The results indicate that D/HoH individuals trusted
the robot less, but had more fluent (quality of the interaction during
a shared activity) collaborations [12]. Thus, there may be a dissocia-
tion between trust and team fluency for D/HoH individuals. Future
human-robot collaboration research needs to incorporate D/HoH
individuals within their experimental set-ups in order to properly
understand the overall team dynamics.

2 RELATEDWORK
Safety is a key aspect in human-robot collaboration. The safest way
to implement cobots into manufacturing is still a subject of research,
especially when we consider the D/HoH community. Efforts to mit-
igate safety concerns include the development of post-collision
responses, collision prediction, and collision free trajectory map-
ping technologies [27]. For instance, post-collision responses are
when a cobot stops once a collision is detected. Such strategies have
already been included in commercial robots [17]. Another method
that has been shown to increase safety is better human situational
awareness and robot interpretability. Maurtua et al. [17] developed
a system where hearing subjects were able to tap the robot to make
it stop moving and point to an object they wanted the robot to
grasp. LED lights were also added to the robot to communicate if
the gesture had been acknowledged, which increased interpretabil-
ity. Overall, subjects reported a positive perception of trust in these
safety implementations.

Cobots communicating intent to humans has also been explored
with mixed reality [21]. Participants were asked to identify colliding
and non-colliding motions with 2D visualization, no visualization
and a head-mounted display. Results showed that participants had
16% higher accuracy and 63% better response time when using
head-mounted displays. Participants also perceived lower overall
workload compared to when using 2D and no visualizations. It is
important to note that interpretability of a robot has been linked to
increased trust, leading to better fluency in collaboration.

Current research involving D/HoH individuals and manufac-
turing cobots is scarce, as research has focused primarily on sign-
language communication frameworks [2, 19, 22, 23, 25]. For exam-
ple, RASA is a popular Iranian social robot that has been researched
as a sign language tutor [13]. The robot was taught by having hear-
ing individuals sign using a data glove and imputing this data into
the robot. Other researchers have explored other topics such as
the use of robotic dogs as service dogs for D/HoH individuals [14].
There is a need to consider other research topics that involve the
D/HoH community that do not necessarily involve sign language.

Figure 1: Physical layout for Task 1 with the Baxter Robot.

In response to this gap, our study focuses on cobots interacting
with D/HoH individuals.

3 METHODOLOGY
The study’s overall goal was to investigate how hearing status may
impact various collaborative assembly tasks. The study used amixed
design, where hearing status (hearing vs. D/HoH) was the between-
subjects variable and either the use of Baxter faces or normal vs.
high cognitive load, depending on the task, was the task-specific
within-subjects variable. Each participant completed four 5-minute
trials with a Baxter Robot, where the first two trials were task 1 and
the remaining two trials were task 2. Each trial corresponded to a
task-specific manipulation, which were counterbalanced within a
task. Participants were trained on a task prior to task completion.

Task 1 required participants to assemble a PVC piece with a ro-
bot (see Figure 1). The assembly was broken into three stages, which
were physically separated from each other. Participants picked up
a part in stage one, and walked over to stage two, which required
inserting the previous part into the new part. Stage three was where
participants physically collaborated in a joint-task with the robot,
where the robot held a screw assembly up in the air on which the
participant screwed the entire assembly together. The robot then
dropped the piece, such that the participant could bring it into a
bin at stage 1 and repeat the assembly process. The robot followed
a fixed-timing script where it picked up an assembly piece, moved
the piece in front of it, and opened the gripper after 5-seconds. The
robot did not adapt to the participant. Thus, synchronization had a
strong effect on task performance.

This task’s physical separation was designed to hinder visual
awareness, as the participant had to turn their back to the robot in
stages 1 and 2. Hence, hearing individuals may have an advantage,
as the auditory cues from the robot permitted some situational
awareness. The robot also “failed” approximately 4-minutes into
the trial, when it dropped the assembly piece prematurely on the
ground. This designed failure was used to mimic failures in the
real-world and determine how the participant may be impacted.

The task-specific within-subjects variable was the faces Baxter
displayed, where one trial had the default Baxter face throughout
its duration and the other trial had three faces corresponding to
what Baxter was doing: handing a piece to the participant, picking
up a piece, and when the pre-determined failure occurred (see
Figure 2). These faces were inspired from Deaf culture and were
hypothesized to allow a D/HoH individual to better understand
what the robot was doing. For example, the robot dropping the
piece on the floor, aimed to let the participant understand what
happened more quickly.
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Figure 2: The robot’s faces. Left: when handing a piece. Mid-
dle: when picking up pieces. Right: when a failure occurred.

Task 2 focused on a complex assembly task using Lego pieces,
where Baxter provided the pieces for each assembly stage to the par-
ticipant seated in front of the robot. The overall assembly resembled
a duck (see Figure 3) and assembly instructions were provided on a
monitor. The task-specific within-subjects variable was cognitive
load: normal vs. high. The normal load condition had the instruc-
tions show each individual assembly stage and the robot handed
the correct piece to the human, while the instructions showed every
other assembly stage in the high cognitive load condition. Partici-
pants had a separate bin in the high cognitive load condition from
which they had to find the missing part. Similar to task 1, the robot
ran a pre-programmed script in task 2, and it did not adapt to what
the participant was doing.

Figure 3: The completed Lego assembly for Task 2.

3.1 Participant Demographics
Twelve participants completed this Institutional Review Board-
approved study. Due to sensor failures some participants had to
be excluded. Seven hearing participants and two hard-of-hearing
participants were analyzed. The age range for participants was
19-27 years old with a mean of 21.6 ± 2.8 years. Approximately
58% of participants identified as male, 33% identified as female, and
8% identified as non-binary. In terms of ethnicity, about 58% of
the participants identified as white, 33% identified as Asian/Pacific
Islander, 8% identified as Native or American Indian, and 8% identi-
fied as Hispanic or Latino. In addition, 75% of participants held a
high school diploma, and 25% of participants a Bachelor’s degree.
Participants were able to communicate via a professional American
Sign Language Professional, if requested.

3.2 Metrics
Physiological, behavioral, subjective, and performancemetrics were
collected throughout the experiment. A Zephyr Bioharness col-
lected the physiological measures (i.e., heart rate, heart rate variabil-
ity, and respiration rate), which were used to determine differences

in cognitive load. The behavioral metrics consisted of eye-tracking-
based metrics collected using Pupil Core eye-tracking glasses. The
number of eye-gaze fixations and fixation durations on the robot’s
face, the end-effector, and the assembly pieces provided indication
of a person’s trust and comfort with the robot. The subjective met-
rics included the NASA-Task Load Index (TLX) [7], a post-trial
survey, and a post-task survey. The participants completed the
NASA-TLX survey after each trial to measure perceived workload.
The post-trial survey was also completed, which asked participants
to rate trust, comfort, and how helpful the robot was, using a Likert
scale ranging from 1 (little to none) to 5 (a lot). The post-task survey
asked participants what trial they preferred within a task and why.
Lastly, the performance metrics consisted of productivity (num-
ber of pieces completed, time to assemble) and fluency (number of
functional delays and time at each stage) metrics. Additionally, the
overall interaction was encoded using the Behavioral Observational
Research Interactive Software [3], which was used to encode the
interaction over a trial (e.g., what assembly stage the participant
was at, where was the participant looking). These encodings were
then analyzed using a Needleman-Wunsch Similarity Score. The
Needleman-Wunsch algorithm for creating similarity scores was
originally created for the purpose of aligning protein sequences in
biology and produces a score that reflects the minimum changes
needed to align a sequence.

4 RESULTS
We analyzed behavioral, physiological, and survey-based metrics
to understand the differences between D/HoH and hearing partic-
ipants. Two D/HoH participants were used in this analysis; thus,
the results should be interpreted with caution, and there is insuf-
ficient statistical power to determine significant differences. The
behavioral data consisted primarily of fixations and functional delay
information. Fixations are divided into robot head fixations (which
account for the screen on the robot), end effector fixations, and
piece fixations. Piece fixations are specifically fixations on pieces
on the robot’s board or in the robot’s gripper. Figure 4 provides
the median fixation durations by task and area type. The largest
differences between D/HoH and hearing individuals occurred with
head fixations, as D/HoH individuals fixated on the head approx-
imately 0.5 seconds longer than hearing individuals during task
1. This trend was reversed for task 2, indicating that environment
type (stationary vs. non-stationary) may impact what individuals
with different hearing capabilities find important. Future work will
systematically explore this variable.

D/HoH individuals fixated on the end-effector longer than hear-
ing individuals during task 2, but similar fixation durations occurred
during task 1. This may indicate that D/HoH individuals perceived
safety as an issue, as the chance of collision was greater during task
2 due to the proximity to the robot. The two D/HoH individuals did
rate trust (median=2.5) lower than hearing individuals (median=3.0)
across all trials, which indicates trust may also have been an issue.
The lower trust level may also be an indicator of safety concerns.

Team fluency was also investigated for Task 1 as the number of
functional delays (participant was late or early to the robot station)
and time at each station. The respective medians are provided in
Figure 5. Overall, hearing individuals spent more time waiting on



HRI ’23 Companion, March 13–16, 2023, Stockholm, Sweden A’di Dust et al.

Figure 4: Radar chart comparing the duration of fixations for
D/HoH and hearing individuals.

the robot than D/HoH individuals did, resulting in a larger number
of functional delays. This may indicate that hearing individuals
were not as synchronized with the robot as the D/HoH individuals
were; yet to confirm this preliminary result, data frommore subjects
would be needed.

Figure 5: Radar chart comparing the team fluency measures
for D/HoH and hearing individuals.

The Zephyr BioHarness collected physiological information in-
cluding heart rate, heart rate variability, and respiration rate, which
were all normalized from a baseline measurement to address po-
tential individual differences. D/HoH individuals had larger mean
heart-rate(hearing mean=90, D/HoH mean=109) and respiration
values (hearing mean=21, D/HoH mean=22) and lower heart-rate
variability values (hearing mean=74, D/HoH mean=33) than hear-
ing individuals, indicating a higher overall workload value [8, 9].
However, the overall NASA-TLX values indicated small differences
in perceived workload (hearing mean=45, D/HoH mean=34).

Lastly, time-series charts for the order of events were generated
by BORIS, along with sequence similarity scores. Since wemanually
gathered time sequence behavioral data from gaze fixations of the
participants, we found this sequence alignmentmethod to be helpful
in understanding the similarities between participants’ behaviors.
The BORIS software returns a score out of 100, where 100 represents

identical sequences. The events are recorded as part of the sequence
every second. Our analysis of the first task shows that D/HoH
individuals had an average similarity of sequences at 56%, whereas
hearing individuals had a similarity of sequences at 50%. While
the difference is small, perhaps the D/HoH individuals behavior
was somewhat more in synch with each other than for the hearing
individuals.

5 DISCUSSION AND CONCLUSION
While the study’s sample was small and not balanced equally be-
tween the two participant groups, some of the findings suggest
the potential for differences in human-robot interactions between
D/HoH individuals and hearing individuals, and deserve further
study. These included behavior, subjective trust, and overall work-
load. Although hearing individuals perceived higher workload than
D/HoH individuals, the physiological metrics indicate that the re-
verse was true. This discrepancy may be due to the small difference
in median NASA-TLX overall workload ratings or potential con-
founding factors, such as trust and anxiety. The D/HoH individuals
indicated lower overall trust in the robot than hearing individuals,
which is supported by the D/HoH participants visually fixating
more on the robot. This additional fixation time may have allowed
D/HoH to have fewer functional delays and obtain higher team
fluency. Conversely, the auditory cues may have resulted in higher
time pressure on the hearing individuals, making them rush assem-
bly processes that did not require the robot and then wait for the
robot for another piece. Overall, there appears to be some prelim-
inary evidence for distinct differences in the human-robot team
dynamics between D/HoH and hearing individuals.

The results presented are limited by the number of participants.
We could not meaningfully examine significant effects due to insuf-
ficient power. Additionally, this was a pilot study and we did not
analyze/gather additional metrics that may impact a human-robot
team. The robot also encountered multiple natural failures during
the second task. These instances were recorded, but the timing and
failure type may have impacted the collected data to some extent.

Continued work is focusing on engaging additional participants
from the deaf community. Additionally, we plan to investigate
higher-fidelity interaction enhancements with potential to improve
the overall human-robot team. These enhancements will be created
in conjunction with members of the deaf community in order to
promote inclusivity in HRI.
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