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ABSTRACT

Fusion of multimodal data can offer enhanced machine learning. One of the most common fusion approaches in
deep learning is end-to-end training of a neural network on all available modalities. However, paired multimodal
data from all the modalities is required to train such a network. Collecting paired data from multiple modalities
can be challenging and expensive due to the requirement of specialized equipment, atmospheric conditions,
limitation of individual modalities to probe a scene, data integration from modalities with different spatial and
spectral resolutions, and annotation challenges for obtaining ground truth. A two-phase multi-stream fusion
approach is presented in this work to counteract this issue. First, we train the unimodal streams in parallel
with their own decision layers, loss, and hyper-parameters. Then, we discard the individual decision layers,
concatenate the last feature map of all unimodal streams, and jointly train a common multimodal decision layer.
We tested the proposed approach on the NTIRE-21 dataset. Our experiments corroborate that in multiple cases,
the proposed method can outperform the alternatives.
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1. INTRODUCTION

Aerial imagery has become a popular data source for various remote sensing applications such as classification,
detection, urban planning, disaster management, and surveillance.1–5 Object classification is an essential task
in this domain, where the goal is to identify and categorize objects of interest in aerial images automatically.2,6

With the increasing availability of aerial imagery data, there has been a growing interest in developing automated
methods for object classification.7 Recent advancements in machine learning techniques, particularly in deep
learning (DL) and computer vision, have significantly improved the accuracy and efficiency of object classifica-
tion in aerial imagery.7,8 However, object classification in aerial imagery is a challenging problem due to the
complexity of the scene, occlusion issues, and the high variability in object appearance.9,10 Thus, relying on a
single sensing modality is insufficient to achieve high classification accuracy.

There has been a trend towards incorporating multiple modalities in aerial object classification to improve
performance and robustness.11–14 This includes different types of imagery, such as RGB, infrared, hyperspectral,
multispectral, synthetic aperture radar (SAR), and light detection and ranging, as well as other data sources such
as terrain maps and building footprints. Multimodal approaches have shown promising results, as they leverage
complementary information from different sources to provide a more complete and accurate representation of
the scene.11,15 However, collecting data from multiple modalities can be challenging and expensive due to the
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Figure 1: Unimodal networks for n unimodal streams with their corresponding feature extractors in blue dashed
outlined boxes.

requirement of specialized equipment, atmospheric conditions, limitation of individual modalities to probe a
scene, data integration from modalities with different spatial and spectral resolutions, and annotation challenges
for obtaining ground truth.16,17 Researchers often encounter the issue of limited paired multimodal data for
training an end-to-end multimodal fusion network,16 where paired multimodal data samples simultaneously agree
with the following conditions: 1) spatial and temporal correspondence and 2) synchronous occurrence/availability.

Based upon these underlying conditions, the following research questions arise: 1) is it feasible and computa-
tionally advantageous to fuse legacy unimodal networks pre-trained on unpaired multimodal data samples and
2) what are the optimal approaches to train a fusion network if all paired multimodal data is available? Example
approaches for training fusion networks are: i) training a multimodal network from scratch on all the paired
multimodal data11,18–20 and ii) training unimodal networks in phase one and using the corresponding feature
extractors along with a fraction of paired multimodal data to fuse them in phase two. This leads to needing to
understand what training paradigms perform the best (e.g., freezing or not freezing the feature extractor weights,
data split between phase one and phase two) in terms of accuracy and robustness against different noise profiles.

This work focuses on multimodal limited data fusion; a way to fuse multiple modalities with a limited number
of paired multimodal data using disjoint pre-trained unimodal feature extractors for object classification in aerial
imagery. Our approach is similar to transfer learning in the unimodal case.21,22 A two-phase multi-stream fusion
approach is presented that fuses legacy unimodal networks with limited paired multimodal data. Our approach
avoids retraining multimodal networks from scratch by using pre-trained unimodal feature extractors and fusing
them using limited paired multimodal data via the standard concatenation fusion method before the final decision
layer. To the best of our knowledge, our approach of using pre-trained unimodal networks trained on unpaired
data has not been explored previously for feature-level multimodal fusion. The proposed approach requires
significantly less computation power and training time. Using this approach, we strive to explore previously
raised research questions.

Section 2 of this paper describes the unimodal legacy networks, most common fusion approach used for mul-
timodal fusion with availability of new multimodal data, and finally introduces the proposed limited multimodal
fusion method. In Section 3, we introduce the multimodal aerial dataset, baseline DL network, and experimental
hyperparameters used during experimentation phase. This section also describes different multimodal fusion
network training configurations for comparative studies, their results followed by discussion. Lastly, in Section
4, we summarize our contributions and important results.

2. METHODOLOGY

The limited paired multimodal data issue acts as a bottleneck towards training an end-to-end multimodal DL
network. In this section, we present a two-phase multi-stream fusion approach to counteract this problem.

Generally, for a modality steam i, an individual disjoint unimodal network (shown in Figure 1), consists of
a trainable feature extractor FEi(θi), composed of several convolutional and pooling layers. These layers learn
to extract features as an intermediate output followed by a non-trainable reshaping/vectorization operation



Figure 2: Multimodal fusion network.

ultimately leading to a trainable fully-connected layer (FCL) FCi(ϕi) that classifies the overall data. In this
paper, we call such modality-specific unimodal networks legacy networks. These pre-trained legacy networks
are often neglected when new multimodal data becomes available (e.g., introduction of new sensors).11,18–20

Such approaches not only discard the prior knowledge in the form of those legacy networks, but also consume
significant computational resources and training time.

We utilize the feature-level fusion method, fusing n distinct unimodal data modality streams as shown in
Figure 2. For the first phase, we take the n trained feature extractors {FEi(θi)}ni=1 denoted by Block 1 and
discard their corresponding decision layers. In the second phase, these n feature embeddings are concatenated
and passed through a trainable layer to learn cross-modal interactions CMI(θ) represented by Block 2. The
fused modality streams are followed by a non-trainable reshaping/vectorization operation ultimately leading to
a standard trainable FCL FC(ϕ) denoted by Block 3 to classify the data.

Multimodal paired data are required only to train the cross-modal interaction layer and a standard FCL,
resulting in a small fraction of trainable parameters. Moreover, our approach avoids retraining the whole multi-
modal joint-stream network from scratch, saving computational resources and training time.

3. EXPERIMENTAL STUDIES

In this section, we present experimental studies for the proposed fusion approach along with comparative studies
for unimodal networks and joint stream end-to-end trainable multimodal network.

3.1 Dataset & Network

The NTIRE-21 dataset23 is an aerial imagery dataset that consists of two modalities, Electro-optical (EO)
and Synthetic Aperture Radar (SAR). Aerial and satellite images are usually captured using EO sensors which
depict an aerial view as the human eye perceives it. However, EO is susceptible to occlusion (e.g., clouds) or
poor lighting (e.g., night time); thus, additional modalities such as Synthetic Aperture Radar (SAR) or Infrared
(IR)4,5 are required to support object detection algorithms.23 This presents an interesting challenge, since EO
is the dominant modality with more information in normal weather conditions. The NTIRE-21 dataset presents
a 10-class classification problem comprised of Sedan, SUV, Pickup Truck, Van, Box Truck, Motorcycle, Flatbed
Truck, Bus, Pickup Truck with Trailer, and Flatbed Truck with Trailer.

The EO and SAR unimodal legacy networks used for the NTIRE-21 dataset consist of a feature extractor
with ResNet1824 as the backbone. The extracted features are flattened and fed to the decision layer which
consists of FCLs for class prediction. The EO-SAR multimodal network used for the NTIRE-21 dataset consists
of two branches (one for each modality) with ResNet18 as the backbone of the feature extractor as shown in
Figure 2, Block 1. The extracted features are flattened and concatenated to fuse the features from each modality
(In-Network data fusion) as depicted in Figure 2, Block 2. The fused data is fed to the decision layer which
consists of FCLs for class prediction, Figure 2 Block 3.



The networks were trained using Adam optimizer with 0.001 as the learning rate over 250 epochs. Since the
dataset is imbalanced, where class Sedan has the most number of samples, and class Bus has the least number
of samples, 624 samples (number of samples in the class with the least number of samples) were used from each
class. 524 samples from each class were used as the training set, and 100 samples from each class were used as
the test set.

3.2 Experiment Configurations

The proposed approach was validated by following the two-phase process described in Section 2 with the NTIRE-
21 dataset. The first phase consists of training the EO and SAR unimodal networks with a fraction of the training
set. The unimodal networks were trained with 20%, 40%, 60%, and 80% of the samples for the first phase. The
second phase consists of training the EO-SAR multimodal dataset with the remaining 80%, 60%, 40%, and 20%,
respectively. The EO-SAR multimodal network’s feature extractors for each modality (Block 1 in Figure 2) are
initialized with the EO and SAR unimodal network weights, respectively. This is done to utilize pre-trained
legacy unimodal networks and fuse them with limited paired multimodal data in the second phase.

Two different configurations in phase two were used for the multimodal network: Frozen and Non-Frozen.
The frozen configuration consists of frozen or non-trainable branched feature extractors (Block 1 in Figure 2).
On the other hand, the entire network is trainable in the non-frozen configuration. As a baseline, EO unimodal
network, SAR unimodal network, and EO-SAR joint stream multimodal network are trained with 100% of the
training data. Table 1 summarises the different training configurations.

Table 1: Limited fusion training configurations for a multimodal network, Figure 2

Configuration Block 1 Initialization Block 1 Frozen Block 2 Initialization Block 2 Frozen Block 3 Initialization Block 3 Frozen

Unimodal Random No N/A N/A Random No
Joint Stream Random No Random No Random No
Frozen Unimodal weights Yes Random No Random No
Non-Frozen Unimodal weights No Random No Random No

Effects of noise on fusion networks were further studied by introducing zero-mean Gaussian noise with incre-
mentally higher variance during inference to either one of the modalities or both modalities. Minimal Gaussian
noise was also introduced while training the network (zero-mean Gaussian noise and variance 0.02). The effects
of the noise were studied by observing the network classification accuracy on the testing set.

In summary, the independent variables for this experimental study consist of noise type, training data split,
and fusion training configuration. The dependent variables are network accuracy and training time.

3.3 Results

Gaussian noise with incremental noise was added to either one or both modalities during inference to study the
effects of noise on the fusion network performance. The results in Figure 3 show that unimodal EO and unimodal
SAR performance declines drastically when noise is added to those modalities, which was expected. In the absence
of noise, EO performs better than the SAR modality. EO-SAR multimodal fusion network with concatenation
fusion block performance as good as a unimodal EO network in the absence of noise. However, when noise is
introduced in the dominant EO modality, the performance of the unimodal EO network dips significantly while
the fusion network still performs well. When noise is added to the non-dominant SAR modality, the multimodal
network’s performance stays unaffected. When noise was introduced in both modalities, the multimodal network
performance drops significantly with the performance curve lying between unimodal EO and unimodal SAR
performance curves.

The proposed limited fusion training method was validated by training EO and SAR unimodal networks on
a fraction of training data and the knowledge was transferred to a multimodal fusion network by training the
network on the remaining fraction of training data. Figure 4 shows the accuracies of the networks trained using
the proposed method with training data splits of 20%-80%, 40%-60%, 60%-40%, and 80%-20% with different
noise profiles during training. Gaussian noise with 0.0 mean and 0.06 variance was added to the noisy modality
during inference for the experiment.



Figure 3: Effects of introducing noise in either one or both modalities on the fusion network during inference.
The black vertical line represents the amount of noise introduced in the training data.

The network accuracy of EO-SAR Frozen pre-trained Nets increases as the training data split goes from a
left-sided split to a right-sided split. Frozen pre-trained Nets feature extractors are trained only during the first
phase with the first split of the training data, followed by training only the decision block during the second phase
with the second split of the training data. Hence, this behavior is observed due to more data being available
to train the feature extractor during the first phase on the right-sided training data split, 80%-20% generally
performing the best. The network accuracy of EO-SAR Non-Frozen pre-trained Nets decreases as the training
data split goes from a left-sided split to a right-sided split. Non-Frozen pre-trained Nets feature extractors are
trained during the first phase with the first split of the training data, followed by further training of the feature
extractors and decision block during the second phase with the second split of the training data. Hence, this
behavior is observed due to training both - feature extractors and the decision block - on more data during the
second phase on the left-sided training data split, 20%-80% generally performing the best. The less amount of
data available for fine-tuning the feature extractor while training the decision-making blocks also adds the risk
of overfitting the network over a small amount of data.

Since the EO modality is the dominant modality, the performance of unimodal EO is generally the best
performance, except in the case of noisy EO modality. The unimodal EO network performance is closely followed
by the joint stream (EO-SAR multimodal network trained end-to-end on the entire training dataset), frozen, and
non-frozen pre-trained networks. The proposed approach outperforms the unimodal and joint stream end-to-end
training methods in the case of noisy dominant (EO) modality. These trends; however, break down in case of
the presence of noise in both modalities.

There is a clear benefit of limited fusion of pre-trained nets, since the training time of the multimodal network
with the proposed approach is significantly less than training the entire fusion network from scratch, shown in
Figure 5. Pre-training (light green) time is the average time to train the unimodal EO and SAR networks during
the first phase. The pre-training time increases as the size of the per-training dataset increase, i.e., the training
data split goes from a left-sided split to a right-sided split. Frozen and Non-Frozen training time decrease as
the size of the fusion dataset decreases. The overall training time for pre-trained networks (pre-training time +
fusion time) is significantly lower than that of the EO-SAR joint stream multimodal network. The total training
time with Frozen increases as the splits goes from left to right while the total training time with Non-Frozen
decreases as the splits go from left to right. This is due to the small number of trainable parameters with the
Frozen network when compared to the Non-Frozen network.
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Figure 4: Network accuracy of the Unimodal EO, Unimodal SAR, Joint Stream training, Frozen pre-trained
network and Non-Frozen pre-trained network in different data splits and presence of noise in different modalities
during inference.

Figure 5: Total time in seconds to train the Unimodal EO, Unimodal SAR, Joint Stream training, Frozen pre-
trained network and Non-Frozen pre-trained network. Pre-training (light green) time is the average time to train
the unimodal EO and SAR networks for that training data split.

3.4 Discussion

Data collected from remote sensors can be corrupted or noisy due to inherent sensor noise and errors introduced
during data transmission. Some image processing techniques can also introduce a loss of information and intro-
duce noise to the data. Results in Figure 3 show that if there is noise present in one or the other modality, fusion
networks can utilize the information from the other modality and still perform better than unimodal networks.
This shows the merit of using multimodal networks over unimodal networks if the data is noisy.

The presented limited fusion training method presents a way to fuse legacy unimodal networks trained on



unpaired data into a multimodal network using limited paired multimodal data. Figures 4 and 5 show that
the training time of the multimodal network with the proposed method is significantly less than joint stream
end-to-end training of the multimodal network; however, there is a small yet acceptable drop in the performance
accuracy. This also enhances the usability of the legacy unimodal networks while transitioning to the multimodal
sensing paradigm. If all the paired multimodal data is available for training, a multimodal network can be trained
from scratch on all the paired or joint stream multimodal data, or it can be trained in two phases using the
proposed method. The networks trained using the two methods perform similarly to each other; however, the
total time required to train the network using the proposed method is much less than the traditional end-to-end
training method. The reduction in the training time of the multimodal network using the proposed method is
more significant than it appears in Figure 5. Since the approach aims to use legacy unimodal networks, the
training process will only include the second phase of the proposed method (shown in blue and dark green in
Figure 5). The total training time for the proposed method also depends on how the training data is split for
training the unimodal networks in phase one and the multimodal fusion network in phase two.

The second phase of the proposed training method can be carried out in two configurations: 1) Frozen, where
each modality’s feature extractor parameters in the multimodal network are frozen and only the decision layer
is trained, or 2) Non-Frozen, where the entire multimodal network is trained including the feature extractor and
the decision layer. The data split is an important hyperparameter with the proposed training method since more
data is used to train each modality’s feature extractors with a right-sided split (60%-40%, and 80%-20% splits)
while more data is used to train the decision layers (and fine-tune the feature extractor in case of Non-Frozen
network) with a left-sided split (20%-80%, and 40%-60% splits), see Figure 5.

It is observed in Figure 4 that a right-side split is better for Frozen training configuration since it uses
more data to train the feature extractors (more parameters to train in the first phase) and uses limited data
to train only the decision layer (fewer parameters to train in the second phase). A left-sided split is better
for a Non-Frozen training configuration since it uses more data to train the decision layer and fine-tune the
feature extractors (more parameters to train in the second phase). A right-sided split for Non-Frozen training
configuration conditions the network to overfit the entire network on limited data during the second phase.

Even though the observations made in this paper are based on one dataset (NTIRE-21), the dataset is
representative of various aerial imagery datasets. Such datasets generally consist of an Electro-Optical (EO) or
RGB camera sensor modality as the dominant modality which depicts an aerial view as the human eye perceives
it. They also consist of other support modalities like Near-Infrared (NIR), Synthetic Aperture Radar (SAR),
or hyperspectral imaging sensors which are more useful in cloudy or nighttime conditions when the dominant
modalities may be more susceptible to occlusion or poor lighting.

4. CONCLUSIONS

In conclusion, this paper presented a two-phased training process for multimodal networks. The proposed
approach was validated using the NTIRE-21 dataset, a 10-class aerial imagery classification problem. The
network accuracy and training time was compared with end-to-end trained multimodal network and unimodal
networks as baselines. The training time of the multimodal network with the proposed method is significantly
less than joint stream end-to-end training of the multimodal network; however, there is a small yet acceptable
drop in the performance accuracy. Effects of the presence of noise during inference and different data split on
network performance were also studied. The proposed two-phase multimodal network training method provides
a way to fuse legacy unimodal networks trained on unpaired data from different modalities into a multimodal
network. This also enhances the usability of the legacy unimodal networks while transitioning to the multimodal
sensing paradigm and would benefit industries such as satellite surveillance, and autonomous vehicles which use
multimodal data.
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