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Motivation

Multimodal Data:

* Information about same phenomenon acquired from different types of sensors.
e Each modality gives optimal information under certain conditions.
* Fusing multi-modal data enhances the discovery of underlying information.[11{21(3]
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Motivation

Challenges with multimodal data collection in aerial imagery:

Limited availability of paired multimodal data for training an end-to-end multimodal fusion network 43!, where paired
multimodal data samples simultaneously agree with the following conditions:

* Spatialand temporal correspondence * Synchronousoccurrence/availability
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[4] Lahat, D., Adali, T., and Jutten, C., “Multimodal data fusion: an overview of methods, challenges, and prospects,” Proceedings of the IEEE 103(9), 1449-1477 (2015).
[5] Zhu, B., Zhou, L., Py, S., Fan, J., and Ye, Y., “Advances and challenges in multimodal remote sensing image registration,” I[EEE Journal on Miniaturization for Air and Space Systems (2023).
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Motivation
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Research Questions:
RQ1: Is it computationally advantageousto fuse legacy unimodal pre-trained networks?

RQ2: What are the efficient approachesto train a fusion network if all paired multimodal datais available?
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RQ1:Is it computationally advantageous to fuse legacy unimodal pre-trained
M eth OdOI()gy networks?

We present a two-phase multimodal fusion approach to counteract the problem of limited paired multimodal data.
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Methodology

RQ2: What are the efficient approaches to train a fusion network if all paired
multimodal data is available?
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NTIRE-21 Dataset [°!

Multimodal dataset from NTIRE 2021 Multi-modal Aerial View Object Classification Challenge includes:
* Electro-Optical (EO) Images

» Synthetic Aperture Radar (SAR) Images

Electro-Optical

Classes: 10

Samples per Class: 625

Training / Testing: 5250/ 1000

Synthetic Aperture Radar

[6] J. Liu etal., "NTIRE 2021 Multi-modal Aerial View Object Classification Challenge," 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, pp. 588-595,
doi: 10.1109/CVPRW53098.2021.00071.
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Results: Performance of Eusion on Noisy Data

Training data: Gaussian Noise with 4 = 0 and ¢ = 0.02
Test data: Incremental Gaussian Noise with u =0

Accuracy w.r.t. Gaussian Noise Variance (in test set)
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EO is the Dominant Modality because the network performance is affected more by the presence of noise in the EO modality.
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i ] Split: Unimodal training data — Multimodal fusion training data
Results: Accuracy vs Split

Noise in the test dataset: Gaussian Noise with u = 0 and 02 = 0.06
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Frozen and Non-Frozen configurations performs better when there is significant noise in the Dominant Modality (EO)
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Results: Training Time
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Conclusions

* Proposed a two-phase multimodal network training method that provides a way to fuse legacy unimodal networks
trained on unpaired data from different modalitiesinto a multimodal network.

e The training time of the multimodal network with the proposed method is significantly less than joint stream end-to-
end training of the multimodal network; however, there is a small yet acceptable drop in the performance accuracy.

* Enhancesthe usability of the legacy unimodal networks while transitioningto the multimodal sensing paradigm and
would benefitindustries such as satellite surveillance, and autonomousvehicles.

RQ1: Is it computationallyadvantageousto fuse legacy unimodal pre-trained networks?  YES!

* Less data required for fusion trainingsince 80-20 split generally performs the best.
* Training time is significantly reduced.

RQ2: What are the efficient approaches to train a fusion network if all paired multimodal datais available?  Depends!

* Least training time: Frozen * Highest accuracy: Joint Stream
* Most robust to noisy data: Non-Frozen
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Thank You!!

Any questions

Please feel free to reach out to us at ss3337@rit.edu
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