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Abstract— Technologies in machine learning and artificial
intelligence have come a long way in decision making and
system automation, but still faces difficult challenges in semi-
automation and human-in-the-loop frameworks. This work
presents a probabilistic policy blending approach for shared
control between a human operator and an intelligent agent. The
proposed approach assumes that the agent can control a system
and the human operator needs to communicate the system’s
intended goal. A comparative study is presented between
different arbitration functions that are used to blend the human
and agent’s actions. The proposed approach can achieve a
variable level of assistance to the human operator successfully
within discrete action space using the Lunar Lander game
environment developed by OpenAI. Furthermore, human physi-
ological data have been analyzed while the human interacts with
the system and the agent using different arbitration functions.
A correlation between the physiological data, arbitration level,
and task performance was observed.

Index Terms— arbitration, blending, DQN, human-robot
team, human-in-the-loop, reinforcement learning, shared au-
tonomy, workload

I. INTRODUCTION

Technologies in machine learning and artificial intelli-
gence have made significant advances in decision making
and system automation in the past few decades. Big data
and improvements in simulation environments have paved
the way for advancements in the field of deep learning and
reinforcement learning. Many robotic systems that rely on
these learning methodologies have characteristics such as
high sensitivity to changes in sensor data, low response time,
robust control, and consistent performance. These agents lack
the ability to solve novel problems and identify intended
system goals. This warrants humans being “in the loop” and
share system control with the agent. However, human actions
are noisy and sub-optimal, which increases the difficulty
of developing effective shared-control frameworks. Sharing
control of a robotic arm with noisy human inputs and AI
inputs, for example, can result in an ineffective system.
Determining how to mediate control of a robotic system
between participating teammates effectively is still being
investigated by the research community.

The human is responsible for communicating the system’s
intended goal explicitly or implicitly using their actions if
the goal representation is too complex. The intelligent agent
is responsible for predicting the intended goal and drive
the system to that goal. The human supervisor must remain
vigilant and correct any agent actions that stray away from
the goal. Novel situations like the misinterpretation of the
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environment due to noisy sensor readings may require the
human to take full system control, which may result in an
overloaded workload state and reduce team performance [1].
High task performance may be maintained with the agent in
full control; however, this will result in the human being
underloaded, disengaged with the system, and unable to
mitigate undesired system states if agent autonomy fails [2].
A symbiotic relationship is needed between the human and
agent in order to promote fluent team collaborations [3]. This
requires the agent to understand the human’s current state.
One potential solution to this problem is to use the human’s
physiological signals to estimate the human’s current state
and adapt the agent’s behavior accordingly to achieve a more
fluent team collaboration.

Many attempts have been made to formalize shared control
in robotics, where the control of a robot can be shared
between the human operator and the intelligent agent [6]. Ex-
isting research recognizes the critical role of shared control
in creating a more effective collaboration between the human
and the agent [3], [5]–[7], [9]–[11]. However, the previous
studies on shared control within discrete action space rely on
a learned model or agent policies for arbitration and lack the
flexibility of changing the arbitration function when needed
[7], [16], [19]. This paper proposes a flexible probabilistic
policy blending approach that arbitrates between the raw
human actions and intelligent agent’s actions based on the
assumption that each teammate has an associated probability
that the action suggested by that teammate is optimal.

Further, this study explores the relationship between the
human’s workload, physiological signals, and the proposed
arbitration approach. The analysis provides insight into using
the human workload state to adapt the arbitration function
in order to maintain a nominal human workload state and
increase the human-agent team performance. The proposed
approach is validated using the Lunar Lander game environ-
ment [4], where the goal is to land a rocket on a randomly po-
sitioned landing pad. This environment provides an episodic
event-based game that is generally considered difficult for
humans, but intelligent agents can solve the environment.
The goal of the environment (rocket’s x-position with respect
to the landing pad) is hidden from the agent; thus, requiring
the human and agent to collaborate. The approach was
validated using data from six research lab members who were
not familiar with the experiment. The key contributions of
this research are:

• A probabilistic policy blending approach that can pro-
vide a varying level of arbitration.

• Presented the analysis of the effects of different arbi-



tration functions on human perceived workload, physi-
ological data, and task performance.

The rest of the paper is organized as follows: Section II
presents related work in the field of shared autonomy, Section
III proposes the probabilistic policy blending approach for
shared autonomy, while laying down the details of the
experimental design used to validated the proposed approach.
Section IV presents the experimental results and Section V
discusses the findings and concludes this paper.

II. RELATED WORK

Many attempts have been made to formalize shared control
in the past few decades, from binary control where the
system has full or no automation to a fine-grained degree
of control based on a specific arbitration function. Goertz
first proposed the use of robot manipulators for handling
nuclear material via teleoperation in the 1960s [8]. This
marked the beginning of years of research on shared control
of robotic systems with varying degrees of automation.
One common shared control model is a fully autonomous
takeover by the intelligent agent after a trigger event, such
as a goal prediction exceeding a confidence threshold or a
user command.

Instead of a full autonomous takeover, the actions sug-
gested by the human and the intelligent agent may be
arbitrated to improve team performance. S. Srinivasa et al.
[5], [6] developed a policy-blending arbitration method to
combine actions proposed by the human and the intelligent
agent for problems where the assistance is provided by the
agent over the distribution of goals rather than a single
goal. The policy blending method maneuvered the robot
close to the goal distribution, which allowed the agent to
predict the intended user goal based on the user-specified
trajectory. Most shared control strategies can be general-
ized with different arbitration functions for full autonomy
takeover [9] or virtual fixtures [14]. S. Javdani [19] exploited
hindsight optimization as a shared control approach. The goal
prediction problem was formalized as a partially observable
Markov decision process. This formulation did not wait for
user input when goal confidence was below a threshold.

P. Trautman [18] used a probabilistic approach for shared
control encompassing the idea of optimizing the intelligent
agent’s action over the human’s suggested actions. Katyal
et al. [15] expanded upon this by developing a blending
approach to control a prosthetic limb system stating that
arbitrating two independent actions without evaluation of
the action’s quality may result in catastrophic failure. This
is due to the possibility of selecting sub-optimal actions
more frequently, which can be avoided by optimizing the
intelligent agent’s policy over the human’s suggested action.
However, it is not always possible to have a mechanism to
evaluate the independent actions.

The developments in deep reinforcement learning have
provided a model-free control approach for robot automation,
where no prior knowledge of the environment dynamics
is required. Members of DeepMind [15] made significant
contributions to the idea of controlling a system using

deep reinforcement learning. Since then, deep reinforcement
learning has been used to control many systems formulated
as episodic Markov Decision Processes [17]. A Markov
Decision Process (MDP) is a mathematical framework that
describes an environment using the tuple (S,A, T,R). S is
the set of states or state space, A is the set of actions or
Action space, T is the transition matrix with probabilities of
transitioning from one state to another, and R is the reward
received after transitioning from one state to another due
to action a, i.e., reward function. MDPs follow the markov
property, which states that the future states depends only on
the present state, i.e. the future does not depend on the past.

Deep reinforcement learning has been applied to shared
control systems. S. Reddy, et al. [7] developed a policy
blending scheme for shared control using deep reinforce-
ment learning across three scenarios: (i) unknown dynamics,
known goal space, and user policy; (ii) unknown dynamics
and the user policy, known goal space; (iii) unknown dy-
namics, user policy, and goal space, minimum assumptions
are made about the task environment and user policies. This
policy blending method demonstrated that a human-agent
team can perform better than the sole teammates in the lunar
lander environment using a user-specified arbitration function
that uses the agent’s Q-value function to evaluate the relative
quality of actions suggested by the human and the agent.

The quality of human actions can be negatively impacted
if the human is not in the optimal state [1], [2]. Estimated
human states can potentially carry information on the quality
of human actions. Human state-based adaptive systems are
on the rise and have seen many developments in the field of
Human Robot Interaction (HRI) and Human Computer Inter-
action (HCI). Many recent works are attempting to close the
feedback loop in human-robot teaming by estimating human
states using human’s physiological data and adapting robots
behavior based on the estimated human states. A. Darzi
and D. Novak [20] used physiological measures such as
electrocardiogram (ECG), respiration rate, skin conductance,
and electromyography (EMG) to estimate task difficulty,
enjoyment, valance, and arousal and used it to adapt the
task difficulty. L. Peternel et al. [21] focused on physi-
cal muscle fatigue as the adaptation criteria in a physical
human-robot co-manipulation task. EMG signals were used
to estimate the physical fatigue in humans and change the
robot’s behavior from learning human trajectories to taking
over most of the repetitive physical work in the task. J.
Schwarz and S. Fuchs [22] proposed a real-time assessment
of multidimensional user state (RASMUS) framework which
uses workload, fatigue, motivational aspects of engagement,
attention, situation awareness (SA), and emotional states of
the human and the associated effects on the task performance
for triggering system adaptation.

The rising availability of physiological sensors at a lower
cost in recent has encouraged the HRI community to utilize
physiological data for adaptation. A. Kothig et al. [23],
[24] proposed a software framework called HRI Physio Lib,
which provides a set of scripts, tools, and methods to provide
a more standardized integration of physiological adaptation



in HRI. The framework has a working implementation with
cardiovascular sensing. Many studies around shared control
paradigms that incorporate multi-modal guidance feedback
to humans, use workload as a performance metric. Typical
modalities for guidance feedback are haptic, auditory and
visual [25], [26]. However, they do not leverage most of
the human workload measurements by using it to adapt
the control between the human and the control system
(usually an AI or a robot). The aforementioned works provide
evidence that physiological data of humans in a human-robot
teaming setting can be used to adapt the agent’s behavior to
optimize task performance. The proposed approach lays the
foundation for such a shared control paradigm, where the
system will be able to adapt the level of control humans have
over the system to maintain the workload within the normal
range. Variations in human physiological data with different
arbitration functions are also analyzed so the physiological
data can be used directly for adaptation in the future.

This work investigates the different aspects of arbitration
in shared control. Minimum assumptions are considered,
where the system dynamics, user policy, and goal space
are unknown. An intelligent agent with unknown system
dynamics, goal space, and user policy often do not have an
optimal policy. Some work suggests that raw human actions
can be used directly to optimize the agent’s policy [5]–
[7], [19]. However, as the problem becomes more complex,
human actions can be extremely noisy due to the inconsistent
and uncertain nature of humans to reliably optimize agent’s
policy over it, especially within a discrete action space.
Additionally, the existing policy blending strategies lack the
flexibility to offer varying levels of control in a shared control
setting with a discrete action space. The presented approach
uses an arbitrator that chooses an action from the human’s
proposed action set probabilistically. This method allows for
a more flexible arbitration mechanism to solve discrete action
space problems. The action probabilities can be influenced
by the human’s internal states such as workload and fatigue
to make the system human aware. The presented approach
studies the relationship between the action probabilities and
the human physiological data. Furthermore, it builds upon
the question of how to achieving varying levels of assistance
from the intelligent agent within discrete space.

III. METHODOLOGY

The general shared autonomy architecture for sharing the
control of a system consists of a human agent, an AI agent
and an arbitrator that blend the human and the AI policies
(see Figure 1). Let β ∈ [0, 1] be the arbitration coefficient,
which is independent of human’s and AI’s policies. At each
time step, the human and the AI suggests an action to
be taken, ah and ar, respectively. The probabilistic policy
blending approach associates a probability to the suggested
actions of each agent and assumes that the AI’s suggested
action ar is the optimal action with a probability of β and
the human agent’s suggested action ah is the optimal action
with a probability of 1− β. This can be represented as:

aβ =

{
ar ; p = β

ah ; q = 1− β
(1)

Fig. 1: The shared autonomy architecture.

where p and q are the assumed probabilities of the AI and
the human agent’s suggested actions, respectively, to be the
near-optimal action for that time step. Setting β = 0 gives
complete control to the human agent, while β = 1 gives
complete control to the AI. β ∈ (0, 1) gives a varying level
of shared autonomy between the human and the AI. The
AI will help in controlling the system while the user will
have partial control over the system and communicate the
intended goal implicitly through suggested actions. The user
actions implicitly communicate the intended goal to the AI
by partially driving the system or Markov Decision Process
(MDP) towards the intended goal.

A. Task Environment

The lunar lander simulation [4] (see Figure 2) was used as
the test environment for this study. The environment’s goal
is to land the rocket on the landing pad, indicated by the
two yellow flags. The landing pad’s x-position is generated
within the game window randomly for each episode. The
rocket starts from the top center of the screen with random
initial position and velocity with respect to the landing pad.
The rocket’s state space consists of 8 different variables: x-
position (x), y-position (y), x-velocity (ẋ), y-velocity (ẏ),
angle (θ), angular velocity (θ̇), left leg touch down (Legleft),
and right leg touch down (LegRight). The goal location is
hidden from the agent by removing the rocket’s x-position

Fig. 2: Lunar Lander environment by OpenAI.



from the state-space. The goal is to accumulate the maximum
rewards by landing the rocket on the landing pad. The action
space consists of 6 possible discrete actions: pairs of {left,
right, off} orientation thruster and {on, off} main engine
thruster. The reward for descending from the top of the
screen to the landing pad and reaching zero velocity after
landing is approximately 100-140 points. Negative rewards
occur when the rocket moves away from the landing pad;
however, landing outside the landing pad is possible with
no extra penalty. An episode ends if the rocket crashes or
lands safely, receiving a reward of -100 or +100 points,
respectively. Each leg ground contact receives +10 rewards
while firing the main engine occurs a negative reward of -
0.3. If an episode is running for more than 1000 steps, the
episode ends and is not considered a crash or success. The
reward function for each step can be represented as follows:

r(s) = −100.
√
x2 + y2 − 100.

√
ẋ2 + ẏ2 − 100.|θ|

+ 10.Legleft + 10.Legright
(2)

B. Experimental Setup

1) Training the AI policy: The Double Deep Q Network
(DDQN) network [27] consists of 4 fully connected layers
with 32, 64, 32, and 16 neurons in each layer, respectively,
and 6 neurons in the output layer. The output layer provides
the Q-values corresponding to each possible action. Relu and
linear activation functions were used in the 4 fully connected
layers and the output layer, respectively. The Adam optimizer
(learning rate = 0.001) with a Mean Squared Error loss
function was used to train the agent.

The agent uses the epsilon greedy policy to explore the
state space during the training phase. It takes a random action
(exploration) with a probability p and takes the action using
the learned policy (exploitation) with a probability of q. The
action suggested by the agent can be formulated as follows:

ar =

{
random(A) ; p = ϵ

A[argmax(Q(a|s))] ; q = 1− ϵ
(3)

where A is the action set and ϵ controls the ratio of
exploration to exploitation and decays exponentially with
each episode at a rate of 0.997.

Fig. 3: Modified Lunar Lander environment for training AI.

The network was trained in a modified environment with
the x-position of the rocket hidden from the agent. The
environment was modified (see Figure 3) to have flat ground

with no obstacles in order to promote the landing behavior.
The reward function was also modified to remove any effects
of receiving more rewards when the rocket lands closer to
the landing pad while training. This was done by changing
the first term in Equation 2 to −100|y|. The agent was
trained until it achieved an average reward of 180 (modified
environment is considered solved at a cumulative score of
180) over the last 100 episodes in the training environment,
which was approximately 1300 episodes.

2) Action arbitration with preferred degree of assistance:
There are 4 different types of arbitration functions used for
this study (including baseline experiments). Let the human
agent’s suggested action be ah and let the AI’s suggested
action be ar. Following are the arbitration functions used
for the study with β as the arbitration coefficient:

• Arbitration BL: Solo Human agent (Baseline).

aβ = ah (4)

• Arbitration AI: Solo AI (Baseline).

aβ = ar (5)

• Arbitration HoAI: The human’s suggested action is al-
ways used (high priority). If no suggested action exists,
then the AI’s action is used (full control switching).

aβ =

{
ar ; if ah = 0

ah ; else
(6)

• Arbitration Aβ: AI’s actions control the rocket with a
probability of β and human agent’s actions control the
rocket with a probability of 1− β.

aβ =

{
ar ; p = β

ah ; q = 1− β
(7)

The arbitration coefficient β ∈ [0, 1] is interpreted as the
preferred assistance coefficient. Arbitration A0.0 (β = 0.0)
represents full human control, while arbitration A1.0 (β =
1.0) gives full control to the AI agent.

3) Human subjects experiment: The system was validated
using data from six research lab members (five male and one
female; age: mean = 24.5 ± 0.9 years) who were not familiar
with the experiment. The average video game experience
of the lab members was 5.2 on a scale of 1-9. Bias in
the performance data was not expected as it is difficult to
bias physiological data and game performance data without
practice. The data collection was performed in compliance
with the university’s research lab operating procedures. The
within-subjects experiment manipulated the arbitration func-
tion as the independent variable, which consisted of 7 levels:
BL1, HoAI, A0.3, A0.5, A0.7, BL2, AI. Each lab member
completed a 100 episode training session before completing
the seven 100-episode long trials (each trial lasted 6 to 8
minutes), corresponding to each independent variable level.

A baseline collection (BL1) trial occurred after the training
session to measure human performance without assistance.
The lab members then completed the HoAI trial, where the
human’s actions were given priority over the agent’s actions.



The lab members then completed three trials corresponding
to the arbitration conditions A0.3, A0.5, A0.7, where the
conditions were counterbalanced across the lab members to
mitigate ordering effects. These arbitration conditions used
the presented probabilistic policy blending method (Arbitra-
tion Aβ). The experiment ended with another baseline (BL2)
trial with the human completing the environment without
assistance. A 5-minute break occurred between each trial
in order to allow the lab member’s physiological signals
to return to their resting state. Post-experiment, the agent
solved the environment without human intervention with
the goal hidden from the agent. This provided the baseline
AI. Physiological data was collected from each lab member
throughout the experiment using the portable BioHarness
BT ECG monitor. The monitor measured the lab member’s
heart rate, heart rate variability, respiration rate, and posture
magnitude which are preprocessed on-board the sensor. The
BioHarness was strapped around the lab member’s chest for
the entirety of the experiment.

The dependent variables consisted of the Lunar Lander en-
vironment’s performance metrics: rewards, time per episode,
crash rate, success rate, land on pad, rate of change of the
actions per minute, workload, heart rate, heart rate variability,
respiration rate, and the NASA Task Load Index [28]. The
NASA Task Load Index was completed after every trial in
order to measure the human’s perceived workload. Perfor-
mance of human-AI team on Lunar Lander with different
arbitration conditions was recorded for 100 episodes and the
performance of last 30 episodes was averaged over the six
lab members (see Table I).

C. Research Questions

The main research questions for this study are:
• RQ1: How does team performance change as the value

of β changes in the probabilistic policy blending ap-
proach? If a strong relationship exists, then the arbitra-
tion value may be manipulated in order to optimize the
team performance based on the current task context.

• RQ2: Is there a relationship between the human’s
physiological data, workload state, and the arbitration
coefficient β? This analysis will determine if a system
can use internal human data (physiological and work-
load) as feedback to a control system in order to set the
arbitration coefficient appropriately.

Two hypotheses were proposed to address these questions:

• Hypothesis H1 states that the rewards and performance
metrics of human-agent team with arbitration Aβ and
β ∈ (0, 1) will be greater than solo agent and solo
human as pilots, focusing on the research question RQ1.

• Hypothesis H2.1 states that the human’s perceived
workload level will significantly differ between the
arbitration coefficients, investigating question RQ2.

• Hypothesis H2.2 states that the human’s perceived
workload level will have a negative moderate correlation
with the arbitration coefficients β. This hypothesis also
focuses on the research question RQ2.

• Hypothesis H2.3 states that the rewards will have
moderate correlations with the human teammate’s phys-
iological data, i.e., heart rate, heart rate variability and
respiration rate, focusing on the research question RQ2.

IV. RESULTS

The performance of the human-agent team on Lunar
Lander with different arbitration conditions was recorded for
100 episodes and the performance of last 30 episodes was
averaged over the six lab members (see Table I). The results
show that the average rewards for arbitration A0.3, A0.5 and
A0.7 are much higher than rewards achieved by the solo
human pilot (BL1 and BL2) with a higher success rate and
landing the rocket on the pad more frequently. Arbitration
A0.3 performed worse than solo AI but arbitration A0.5 and
A0.7 still out-performed AI by achieving higher rewards and
success rate with higher land-on-pad rate. A Kruskal Wallis
test determined that rewards differed significantly between
the arbitration conditions (H(5) = 16.5490, p < 0.005).
The average BL2 rewards were higher than BL1, due to the
accumulation of experience during the experiment.

A higher rate of change of actions taken by the rocket
allows the rocket to stabilize more easily. This metric is much
higher with arbitration A0.3, A0.5 and A0.7 when compared
to solo human and solo agent (see Table I). The solo human
condition’s low rate of change of actions represents higher
difficulty in stabilizing the rocket. The time taken by the
rocket per episode to descend with shared control between
the agent and the human is greater than the solo human pilot.
This is because the agent tries to stabilize the rocket while
descending resulting in a slower descent. The average rate
of change of actions per minute taken by the human pilot
decreases as the value of arbitration coefficient β increases
as the actions are dependent more on the agent’s actions.

TABLE I: Evaluation of different arbitration functions for Human-agent Teaming on Lunar Lander. Mean (Standard
Deviation) of last 30 episodes out of 100 episodes of each trial is shown here for six lab members. Best value of each
metric is represented by a bold values.

Conditions β Reward Time per episode Crash Rate Success Rate Land on Pad ∆ Actions / min Workload
BL1 0.0 -183.66 (55.62) 4.09 (1.07) 0.91 (0.15) 0.02 (0.02) 0.02 (0.02) 118.74 (28.26) 69.61 (7.71)
HoAI - -117.80 (92.81) 6.03 (1.41) 0.81 (0.15) 0.18 (0.15) 0.16 (0.13) 483.61 (100.60) 41.88 (13.27)
A0.3 0.3 -105.27 (102.07) 5.64 (1.06) 0.82 (0.13) 0.16 (0.13) 0.13 (0.13) 903.77 (47.48) 47.22 (10.08)
A0.5 0.5 -25.58 (103.31) 7.21 (1.37) 0.65 (0.20) 0.32 (0.19) 0.27 (0.18) 1126.26 (86.69) 47.50 (16.78)
A0.7 0.7 -13.03 (38.81) 6.73 (1.46) 0.63 (0.15) 0.29 (0.10) 0.22 (0.08) 1091.33 (79.85) 47.27 (13.54)
BL2 0.0 -123.57 (45.39) 4.57 (1.11) 0.92 (0.07) 0.07 (0.07) 0.05 (0.07) 138.46 (50.52) 69.16 (15.30)
AI 1.0 -60.14 (67.52) 6.89 (1.73) 0.67 (0.16) 0.28 (0.15) 0.19 (0.10) 853.06 (149.66) -



TABLE II: NASA-TLX Ratings of different arbitration functions for Human-agent Teaming on Lunar Lander with baselines
BL1 removed. Mean (Standard Deviation) of each trial is shown here for six lab members. Best value of each metric is
represented by a bold values.

HoAI A0.3 A0.5 A0.7 BL2
Mental 30.0 (6.3) -20.0 (14.1) -14.2 (18.2) -16.7 (14.7) 0.0 (17.6)

Physical -15.8 (20.1) -11.7 (19.9) -10.0 (14.5) -2.5 (17.8) -4.2 (24.8)
Temporal -30.8 (14.3) -20.0 (24.9) -20.8 (19.1) -30.0 (17.9) 0.8 (10.2)

Performance -13.3 (50.5) -10.0 (49.0) -23.3 (51.1) -24.2 (48.5) -8.3 (29.8)
Effort -29.2 (8.6) -20.0 (14.8) -9.7 (15.3) -18.3 (12.9) 8.3 (17.5)

Frustration 3.3 (41.1) -8.3 (38.29) -6.7 (40.5) -7.5 (38.7) 15.8 (38.9)

The quality of human actions can be negatively impacted
if the human is not in the normal workload state; thus,
having an adverse effect on the task performance. The
overall human workload was lower during the shared-control
paradigms than the solo human, but a Kruskal-Wallis test
found no significant difference in workload between the
arbitration conditions (H(5) = 0.07317, p > 0.85). Amongst
the 6 lab members, two lab members reported the lowest
overall workload at β = 0.3, two lab members reported the
lowest overall workload at β = 0.5, while the remaining
lab members reported the lowest workload at β = 0.7
for arbitration Aβ. This outcome suggests that arbitration
coefficients need to be individualized to a human. A similar
trend was observed between average rewards and arbitration
coefficients per lab member. Three lab members achieved the
highest overall rewards at β = 0.5, while the remaining lab
members achieved the highest overall rewards at β = 0.7,
which again suggests that arbitration coefficients need to be
individualized to a human. A negative correlation between
lab member’s workload and average rewards was observed
with a Spearman correlation of rs = −0.4867, p = 0.0026.
This shows that human’s perceive lower workload when the
team performance is better. This further supports the usability
of human’s internal states like workload to adapt robot’s
behavior and improve overall team performance. Although
only six lab members were recruited from our research
lab due to COVID-19 restrictions, we believe that we will
observe similar trends even with larger sample size.

Table II shows the NASA-TLX Ratings for each condition
averaged over the six lab members. The results in Table II
show that for arbitration Aβ, the mean mental demand and
effort is the least for A0.3, followed by A0.5, and highest
for A0.7. This shows that taking away more control from the
human does not result in a reduction in mental demand and
effort. One possible explanation for this behavior is that a
higher mental demand was induced due to over-engagement
in a non-demanding task [29] [30]. The Spearman correlation
between the mental demand and effort was found to be
rs = 0.6681, p < 0.0001. This again suggests that arbitration
coefficients need to be individualized to a human.

Temporal demand for the task is lower with the intelligent
agent as co-pilot when compared to solo human as pilot.
Arbitration A0.7 have much lower temporal demand when
compared to A0.3 and A0.5. This behavior was expected as
a higher value of β in the arbitration Aβ can help reduce the
temporal demand of a task. Frustration within the arbitration

Aβ trials was expected to be higher after trials with a lower
Success Rate. However, for arbitration Aβ, lab members
reported the highest frustration with β = 0.5 which had
the highest success rate, and lowest frustration with β = 0.3
which had the lowest success rate. The Spearman correlation
between the mental demand and effort was found to be
rs = −0.4243, p < 0.01. This suggests that frustration is
not only dependent on the outcome of the trials but also on
other factors like how much control of the system human
have, perceived mental workload and effort.

This work also investigates how human physiological data
varies with different arbitration functions. The results in
Table III shows that within arbitration Aβ trials, the mean
heart rate (HR) had an inverse relation with the mean mental
demand, effort, frustration, and success rate. Arbitration
A0.5 had the highest success rate, mental demand, effort,
frustration, and lowest heart rate while arbitration A0.3 had
the lowest mental demand, effort, frustration, success rate,
and highest heart rate. The average respiration rate (RR) had
a direct relation with the mental demand, effort, frustration,
and success rate. There was not much difference observed
in the mean heart rate variability (HRV) within arbitration
Aβ trials; however, the Spearman correlation test showed
that there was a moderate correlation between the heart rate
variability and the rewards with rs = 0.4976, p < 0.009. The
heart rate variability was moderately correlated to changes
in human actions per minute with rs = 0.6025, p < 0.001.

TABLE III: Physiological data evaluation of different arbitra-
tion functions for Human-agent Teaming on Lunar Lander.
Mean (Standard Deviation) of each trial is shown here for
six lab members.

Trial β Heart Rate Heart Rate Respiration Rate
Variability

BL1 0.0 86.35 (10.72) 44.70 (10.96) 17.68 (6.63)
HoAI - 83.04 (8.48) 49.81 (11.04) 18.62 (4.96)
A0.3 0.3 79.58 (10.22) 56.68 (14.88) 17.78 (2.81)
A0.5 0.5 78.84 (10.39) 54.00 (9.74) 18.10 (4.20)
A0.7 0.7 81.40 (8.44) 54.02 (9.51) 17.29 (4.23)
BL2 0.0 77.87 (7.23) 58.85 (11.23) 18.52 (5.02)

There was no correlation between the heart rate and the
rewards with rs = 0.0229, p > 0.9 and a weak correlation
between the respiration rate and the rewards with rs =
0.3411, p < 0.06. The Spearman correlation between the
heart rate and rewards for individual arbitration trials were
analysed to understand this behavior with rs = 0.9428,



p < 0.005 for A0.3, rs = 0.3000, p > 0.6 for A0.5, and rs =
0.8999, p < 0.03 for A0.7. Heart-rate was highly correlated
to the rewards for A0.3 and A0.7, but shows weak correlation
for A0.5. This is due to the saturation in the human-agent
team performance during trial A0.5 with the rewards being
the highest amongst all the arbitration schemes. This further
indicates that there exist a relationship between overall team
performance and the physiological which may not be linear.

These results suggest that there is a relationship between
the human physiological signals and human workload states
and task performance. This can be leveraged to design an
adaptive human-robot teaming system that can adapt the
agent’s behavior based on human states estimated using only
real-time physiological data and task performance.

V. DISCUSSION & CONCLUSION

Human and agents that can complete a given task individu-
ally can benefit from teaming up together if the human-agent
team can achieve a higher performance than either teammate
can achieve individually. The proposed approach for human-
agent teaming needs to perform better than solo-human and
solo-agent. Hypothesis H1 predicted that the rewards and
performance metrics (i.e., land on pad) of the human-agent
team with arbitration Aβ and β ∈ (0, 1) will be greater than
solo agent and solo human as pilots. The criteria for the
hypothesis H1 was met by arbitration conditions A0.5 and
A0.7, but not by A0.3; thus, the hypothesis was partially
supported. Partially supporting H1 demonstrates that there
is an optimal range of β in a shared-control paradigm which
is likely task environment-specific. Additionally, the results
suggest that an arbitration coefficient needs to be tailored to
an individual in order to achieve optimal team performance.

A human-agent team may achieve near-optimal perfor-
mance if the human is under normal workload state [1].
The proposed approach may adapt the arbitration coefficient
based on real-time human workload estimates [31] if there
is a direct relationship between the arbitration coefficient β
and the human workload. Hypothesis H2.1 predicted that
the human’s perceived workload level will significantly differ
between the arbitration coefficients and hypothesis H2.2 pre-
dicted that the human’s perceived workload level will have a
negative moderate correlation with the arbitration coefficients
β. The average workload did not significantly differ between
the arbitration coefficients; thus, H2.1 was not supported.
However, there was a moderate negative correlation between
workload and overall rewards (team performance); thus,
supporting H2.2. This negative correlation is attributed to
individual differences (e.g., skill levels and preferences),
as the lab member’s lowest reported workload occurred at
different arbitration coefficients. This suggests that the value
of β needs to be adapted for individual users to achieve
optimal workload and performance. Future work will inves-
tigate the use of the proposed approach in order to maximize
team performance by changing the arbitration coefficient
β and adapting based on individual user’s metadata (e.g.,
preferences, skill level, past performance) and current state
(e.g., workload, stress, fatigue).

The proposed approach with lab members achieved com-
parable results to the simulated pilot-copilot teams on Lunar
Lander in [7]. Specifically, A0.5 and A0.7 achieved a higher
success rate than all their models but their simulated Laggy
pilot-copilot team achieved slightly higher rewards than the
probabilistic policy blending approach. A comparison with
their real human subjects study was not possible since they
modified the game environment for their study with real
humans to make the vehicle’s legs more resistant to crashing
on impact with the ground.

One potential limitation of the proposed policy blending
approach is that the quality of the actions suggested by either
of the teammates is not analyzed. Instead, the approach relies
on the assumed probabilities of a teammate’s action being
near-optimal which makes the approach indeterministic. This
may lead to the system taking sub-optimal actions occasion-
ally when the assumption does not hold true.

Relationships between the task performance, human work-
load states, and raw physiological data with different ar-
bitration functions were also investigated. Since the Lunar
Lander environment was a more cognitively demanding
task, greater focus was given to the trends that emerged
in mental demand, effort, and frustration with respect to
task performance metrics such as success rate. Taking away
more control from the human did not result in a reduction in
mental demand workload and effort, this again suggests that
arbitration coefficients need to be individualized to a human.
This may be due to the human staying focused on the task
even though the agent had most of the control of the rocket.

Changes in the mean heart rate and mean respiration rate
of the human rate were observed in response to changing
mental demand, effort, and frustration which had a direct
impact on the success rate of the task. Hypothesis H2.3 pre-
dicted that the rewards will have moderate correlations with
the human teammate’s physiological data, i.e., heart rate,
heart rate variability and respiration rate. The criteria for the
hypothesis H2.3 was met with rewards metric showing strong
correlation with heart rate, moderate correlation with the
heart rate variability, and weak correlation with respiration
rate; thus, the hypothesis was partially supported. For a more
effective adaptive human-robot teaming system, human states
should be used as a part of the adaptive strategy and leverage
the most from relationships between the human physiological
signals and task performance. Future work will investigate
the use of physiological data to estimate human workload
states and use it not only as a trigger for adaptation but also
use it to choose the adaptation hyper-parameters such as the
value of beta in the proposed policy blending approach.

Humans can deal with novel problems and identify goals
for the system better than the agent but human actions are
generally sub-optimal, especially under different workload
conditions. In the proposed probabilistic policy blending
approach, this can be taken into account by associating a
higher/lower probability of human suggested action being
optimal based on human workload via the arbitration co-
efficient β. If a human is underloaded or overloaded, their
suggested actions are less likely to be optimal. Thus, the ar-



bitration coefficient needs to be lower or higher, respectively.
In conclusion, this paper presented a flexible probability-

based arbitration approach for shared control with reinforce-
ment learning. The arbitration approach presented in this
paper assumes that agent policy is not perfect and thus,
does not depend on the agent policy for evaluation of the
suggested actions by each teammate. The agent in this paper
was trained in an easier environment with a relaxed goal and
represents a scenario where the exact goal representation for
the task may be too complex to model for training the agent
in the first place. The proposed approach allows humans
to communicate the intended goal of the system implicitly
through user actions without the need to have an explicit
goal representation. The human-agent team performed better
than the solo human and solo agent as the pilots. The
proposed arbitration approach can also be used to implement
varying levels of control each teammate gets while sharing
control of a system within a discrete action space. Trends
in the human physiological data with respect to arbitration
coefficient were studied which can be used to optimize
the arbitration coefficient β in future studies. The proposed
policy blending approach offers a method to fine-tune shared
autonomy to an individual human and arbitrate control of a
system based on human’s internal states such as workload,
and fatigue that can be estimated using physiological data.
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