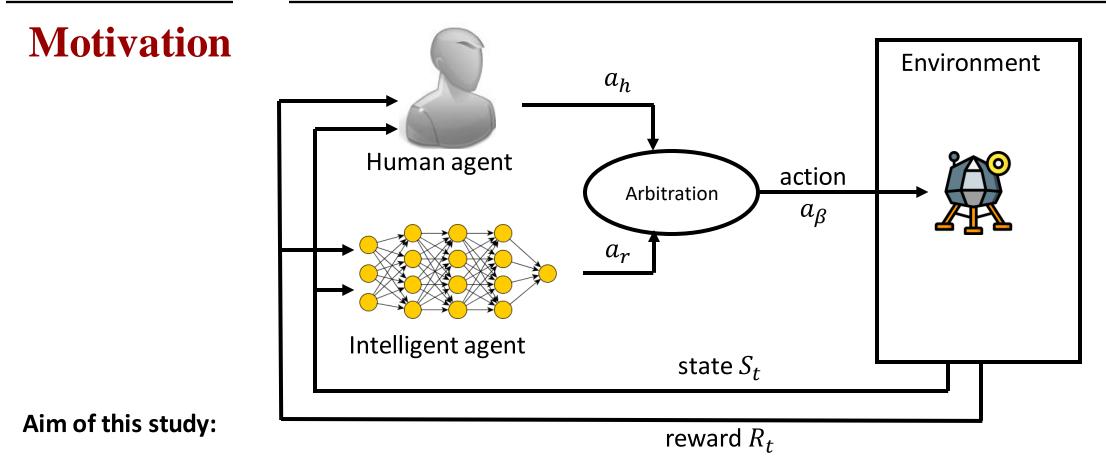
Probabilistic Policy Blending for Shared Autonomy using Deep Reinforcement Learning

Saurav Singh Rochester Institute of Technology Rochester, NY, USA ss3337@rit.edu

Rochester Institute

of Technology

Jamison Heard Rochester Institute of Technology Rochester, NY, USA jrheee@rit.edu



- A probabilistic policy blending approach that can provide a varying level of arbitration.
- Study the effects of different arbitration functions on human perceived workload, physiological data, and task performance.

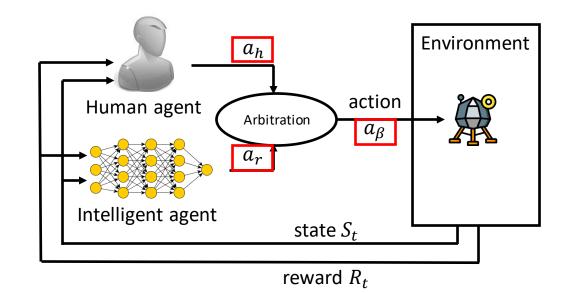
Methodology

Action arbitration with preferred degree of assistance:

Arbitration BL: Solo Human agent (Baseline) $a_{\beta} = a_h$

Arbitration AI: Solo AI (Baseline)

$$a_{\beta} = a_r$$



3

Arbitration HoAI: the human's suggested action is always used (high priority). If no suggested action exists, then the AI's action is used (full control switching).

$$a_{\beta} = \begin{cases} a_r & ; \quad a_h = 0\\ a_h & ; \quad a_h \neq 0 \end{cases}$$

Arbitration $A\beta$, $\beta \in (0, 1)$: Al's actions control the rocket with a probability of β and human agent's actions control the rocket with a probability of $1 - \beta$.

$$a_{\beta} = \begin{cases} a_{r} & ; p = \beta \\ a_{h} & ; q = 1 - \beta \end{cases}$$

Task Environment: Lunar Lander by OpenAI Gym

State Space:

 $S = \{x, y, \dot{x}, \dot{y}, \dot{a}, \dot{b}, \dot{b},$

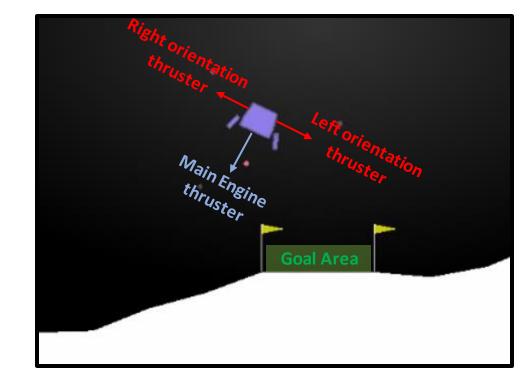
Action Space:

Orientation thruster: {left, right, off}

Main engine thruster: {on, off}

6 possible discrete actions:

 $A = \{(left, on), (right, on), (off, on), (left, off), (right, off), (off, off)\}$



Reward Function:

An episode ends if the rocket crashes or lands safely, receiving a reward of -100 or +100 points, respectively. Each leg ground contact receives +10 rewards while firing the main engine occurs a negative reward of -0.3.

$$r(s) = -100\sqrt{x^2 + y^2} - 100|\theta| + 10 * Leg_{left} + 10 * Leg_{Right}$$

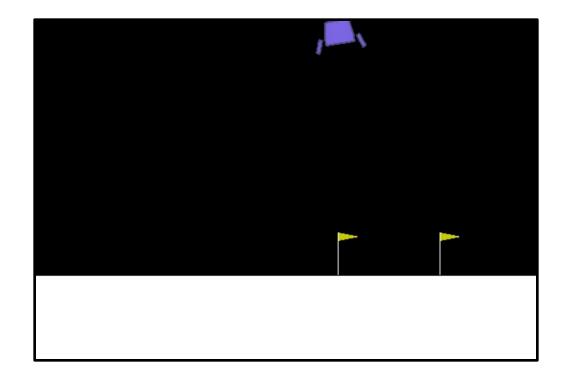
Pre-Training the RL agent

RL algorithm: Double Deep Q Network (DDQN)

State Space:

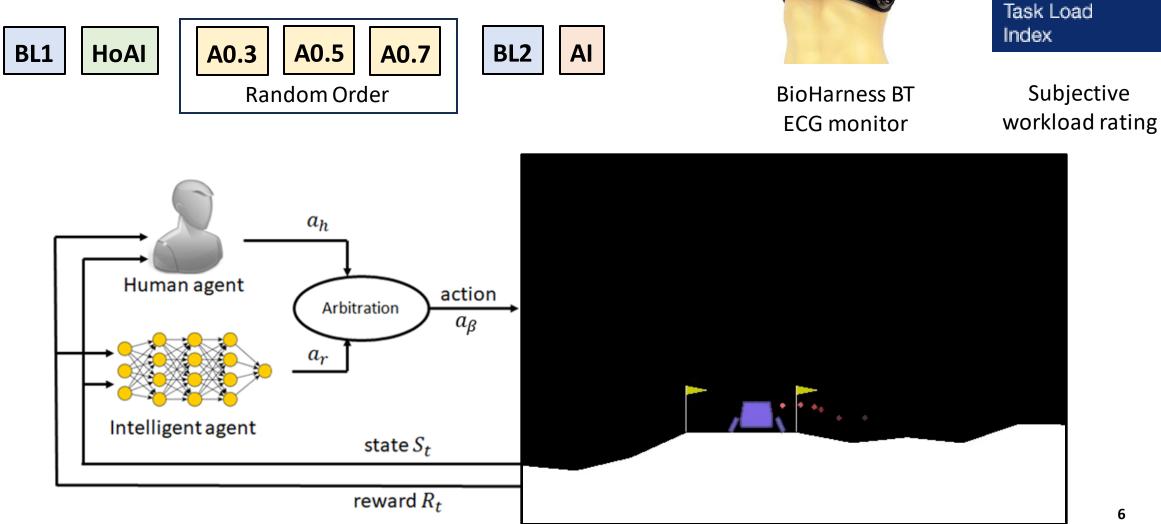
$$S = \{ \mathbf{x}, y, \dot{x}, \dot{y}, \theta, \dot{\theta}, Leg_{left}, Leg_{Right} \}$$

Reward Function: $r(s) = -100\sqrt{x^2|y|y^2} - 100|\theta| + 10 * Leg_{left} + 10 * Leg_{Right}$



Human Subjects Experiment

Experiment Trials:



NASA TLX

Results

Mean of last 30 episodes out of 100 episodes of each trial is shown here for six lab members. Best value of each metric is represented by **bold values**.

Trial	β	Reward	Crash Rate	Success Rate	Land on Pad	Perceived Workload	Heart Rate	Heart Rate Variability	Respiration Rate
BL1	0.0	-183.66	0.91	0.02	0.02	69.61	86.35	44.70	17.68
HoAI	-	-117.80	0.81	0.18	0.16	41.88	83.04	49.81	18.62
A0.3	0.3	-105.27	0.82	0.16	0.13	47.22	79.84	56.68	17.78
A0.5	0.5	-25.58	0.65	0.32	0.27	47.50	78.84	54.00	18.10
A0.7	0.7	-13.03	0.63	0.29	0.22	47.27	81.40	54.02	17.29
BL2	0.0	-123.57	0.92	0.07	0.05	69.16	77.87	58.85	18.52
AI	1.0	-60.14	0.67	0.28	0.19	-	-	-	-

Conclusion

- Presented a flexible probability-based arbitration approach for shared control with reinforcement learning.
- The proposed policy blending approach offers a method to fine-tune shared autonomy to an individual human and arbitrate control of a system based on human's internal states such as workload, and fatigue that can be estimated using physiological data.
- Trends in the human physiological data with respect to arbitration coefficient were studied which can be used to optimize the arbitration coefficient β in future studies.

Thank You!!

Any questions

Please feel free to reach out to us at ss3337@rit.edu