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Abstract: Multimodal fusion networks play a pivotal role in leveraging diverse sources of information
for enhanced machine learning applications in aerial imagery. However, current approaches often
suffer from a bias towards certain modalities, diminishing the potential benefits of multimodal
data. This paper addresses this issue by proposing a novel modality utilization-based training
method for multimodal fusion networks. The method aims to guide the network’s utilization on its
input modalities, ensuring a balanced integration of complementary information streams, effectively
mitigating the overutilization of dominant modalities. The method is validated on multimodal aerial
imagery classification and image segmentation tasks, effectively maintaining modality utilization
within ±10% of the user-defined target utilization and demonstrating the versatility and efficacy of the
proposed method across various applications. Furthermore, the study explores the robustness of the
fusion networks against noise in input modalities, a crucial aspect in real-world scenarios. The method
showcases better noise robustness by maintaining performance amidst environmental changes
affecting different aerial imagery sensing modalities. The network trained with 75.0% EO utilization
achieves significantly better accuracy (81.4%) in noisy conditions (noise variance = 0.12) compared
to traditional training methods with 99.59% EO utilization (73.7%). Additionally, it maintains an
average accuracy of 85.0% across different noise levels, outperforming the traditional method’s
average accuracy of 81.9%. Overall, the proposed approach presents a significant step towards
harnessing the full potential of multimodal data fusion in diverse machine learning applications such
as robotics, healthcare, satellite imagery, and defense applications.

Keywords: multimodal; data fusion; modality utilization; permutation feature importance;
aerial imagery

1. Introduction

Continued advancements in technology, data availability, and algorithmic innovation
are set to propel the ongoing rise of machine learning. Utilizing statistics to identify and
exploit patterns in data is the essence of machine learning. The amount of information
in data has a huge impact on how well the machine learning algorithm learns these pat-
terns. Data are also not limited to a single stream of information such as images, audio
signals, or text. Multimodal data provide complementary information about the same
phenomenon through multiple modalities or information streams. Information captured
through multiple modalities can be beneficial in fields such as autonomous driving for
image segmentation and object recognition [1], aerospace for activity recognition from
aerial imagery [2], robotics for SLAM [3], human–robot collaboration [4], healthcare for
diagnosing diseases from medical imagery [5], and defense applications [6]. Certain scen-
arios may favor one modality over others. For instance, in dark conditions, a near-infrared
camera image is more useful for autonomous driving cars than an RGB camera image.
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The information from different modalities needs to be merged or fused for a mul-
timodal fusion network to utilize the information from all the different modalities efficiently.
Applications within aerial imagery, such as video surveillance, meteorological analysis,
vehicle navigation, land segmentation, and activity detection, heavily rely on a diverse
array of data sources [7–10]. These sources encompass various modalities such as electro-
optical imaging, synthetic aperture radar (SAR), hyperspectral imaging, and more, each
offering unique perspectives and advantages depending on environmental conditions and
observational requirements. The data fusion can take place at the data level, network level,
and/or decision level [11]. This study focuses on network-level fusion for multimodal
remote sensing data, allowing the network to make decisions using data from diverse
modalities while learning feature embeddings independently for each modality. This en-
hances decision-making by exploiting complementary information effectively, resulting in
improved accuracy and robustness.

Network-level fusion-based multimodal networks trained end-to-end may inadvert-
ently prioritize one modality over others, resulting in the heavy utilization of a single
modality, often neglecting the complementary information offered by others [12,13]. This
limits the effectiveness of the multimodal system, especially in scenarios where all mod-
alities contribute equally, or where certain modalities are crucial for accurate inference.
During adverse weather conditions like heavy cloud cover, for instance, Electro-Optical
imagery might be less effective, while synthetic aperture radar (SAR) could provide clearer
insights due to its ability to penetrate clouds. Neglecting SAR data in such conditions
could lead to incomplete or inaccurate assessments, highlighting the necessity of balanced
modality utilization in aerial imagery applications to ensure robust and reliable outcomes.
Furthermore, optimizing multimodal networks in aerial imagery requires the meticulous
tuning of hyperparameters tailored to each modality. Variations in learning rates, regu-
larization strengths, and network architectures for different modalities are essential for
achieving optimal fusion outcomes [12]. The improper adjustment of hyperparameters
for each modality can lead to suboptimal fusion, even causing multimodal networks to
underperform compared to their unimodal counterparts.

These issues can be identified by observing the extent to which the network utilizes
each of the input data modalities using a modality utilization metric [14]. Recognizing these
issues and addressing them is crucial to leverage the multimodal system effectively. This
work presents a modality utilization-based training method that can regulate a multimodal
network’s utilization of its input data modalities. This helps alleviate the problem of the
overutilization of a singular dominant modality. The first research question investigated in
this study is, can we leverage the modality utilization metrics during training to regulate a
network’s reliance on a dominant modality? The method is validated on a multimodal aerial
imagery classification task [15] and a multimodal image segmentation task [16], showcasing
its versatility in various multimodal applications. Furthermore, the study investigates
the impact of modality utilization-based training on enhancing network robustness to
noise, particularly relevant in aerial imagery where environmental factors like weather
conditions and time of day can affect different sensing modalities differently. The second
research question investigated in this study is, does the modality utilization-based training
method improve the overall noise robustness of multimodal fusion networks? The key
contributions of this research are as follows:

• A modality utilization-based training method for multimodal fusion networks to
regulate the network’s modality utilization;

• Demonstrated that regulating modality utilization within a network improves overall
noise robustness;

• A heuristic approach for selecting target utilization-based on unimodal network
performance.

The rest of the paper is organized as follows: Section 2 presents related work in
the field of multimodal data fusion. Section 3 reviews the modality utilization metric,
and presents the modality utilization-based training method. Section 4 lays down the



Sensors 2024, 24, 6054 3 of 24

details of the datasets and network architectures used to validate the presented approach.
Section 5 presents the experimental results followed by a discussion in Section 6. Section 7
summarizes the findings and future work.

2. Related Work

Data fusion in multimodal systems can take place at three different levels: (i) early
fusion or data-level fusion; (ii) intermediate fusion or network-level fusion; and (iii) late
fusion or decision-level fusion [11]. Data-level fusion consists of combining information or
features from different modalities at the raw input level to obtain a better representation
of the data prior to the machine learning model [17,18]. Network-level fusion combines
information from different modalities within the machine learning model via various
mechanisms [19]. Concatenating high-level features or feature embeddings from different
modalities within the model is one of the most common methods of network-level fusion.
Decision-level fusion takes place at the decision level, where the decisions from multiple
unimodal machine learning models are fused into a common decision [19,20]. This work
focuses on network-level fusion because it can effectively exploit complementary informa-
tion from different modalities, learning a joint representation of the multimodal data while
being flexible enough to incorporate modality-specific features.

Object detection [21–23], image segmentation [24–26], and classification [27–29] are
some of the common tasks in the field of aerial imagery. These tasks heavily rely on mul-
timodal approaches, focusing on applications such as video surveillance, vehicle navigation,
land segmentation, and activity detection. These applications use multiple heterogeneous
image sources containing inter-modality and cross-modality information such as LiDAR,
electro-optical imaging, synthetic aperture radar, hyperspectral imaging, and near-infrared
imaging, which need to be combined to enhance the overall information about the phe-
nomenon under observation [30]. Many advances have been made in the field of aerial
imagery in recent years, promoted by various global contests such as the IEEE GRSS Data
Fusion Contests [8], SpaceNet Challenges [9], and NTIRE challenges [10]. A multimodal
knowledge distillation method was proposed by Z. Huang et al. [31] to develop a light-
weight CNN model for arbitrary-oriented object detection. This contributes towards the
deployment of lightweight models for remote sensing where computational resources are
limited. Addressing the limited availability of paired multimodal data, S. Singh et al. [32]
used a two-stage training approach for limited multimodal data fusion. Y. Xiang et al. [33]
used edge-guided multimodal transformers to detect changes while monitoring land dur-
ing natural disasters or cloud/fog occlusions based on heterogeneous satellite and aerial
image modalities.

Network-level fusion in multimodal networks has access to more information than
their unimodal counterparts. Multimodal fusion networks, trained end-to-end, tend to have
an imbalance in the utilization of their input modalities due to their greedy nature [34,35].
This bias often results in the overutilization of a single modality, leading to the neglect of the
valuable complementary information provided by other modalities [12,13]. Imbalance in
multimodal systems limits their effectiveness, especially when all the modalities contribute
equally or are crucial for accurate inference. Each modality branch in a multimodal network
may require different hyperparameters (e.g., learning rates and regularization strengths) for
optimal tuning. Failure to adjust these parameters can lead to suboptimal fusion, causing
multimodal networks to underperform compared to their unimodal counterparts. Thus,
addressing these challenges is crucial for realizing the full potential of network-level fusion
in multimodal systems. M. Ghahremani and C. Wachinger [36] proposed multimodal batch
normalization with regularization (RegBN) to tackle the bias and variance issues introduced
by heterogeneous modalities. Similarly, I. Gat et al. [37] introduced a regularization term
based on functional entropy to address this problem. H. Ma et al. [38] also approached
the issue by introducing a regularization term to calibrate predictive confidence when
one or more modalities are missing. Relying on multiple modalities also increases the
computational complexity of the network. Y. Cao et al. [39] reduced the model complexity
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of using multiple modalities by learning the common information among the modalities
via channel switching and spatial attention. Redundant modalities or modalities with low
utility can also be removed based on the learning utility of each modality as demonstrated
by Y. He et al. [40]. Another approach to tackle the hyperparameter mismatching across
different modalities is to balance the learning of the various modality branches based on an
adaptive tracking factor [41]. N. Wu et al. [12] used a conditional utilization rate for each
modality based on unimodal performance to tackle the hyperparameter mismatch across
different modalities; however, the conditional utilization rate cannot be computed during
training time. Since the modality utilization metric can be effectively computed during
training [14], the work presented in this paper leverages the modality utilization metric to
balance the utilization of the input modalities.

Another rapidly growing approach in the field of multimodal data fusion is trans-
former architectures, which excel at capturing intricate relationships and long-range de-
pendencies within data, making them suitable for multimodal applications [42]. These
architectures are adept at learning the complex interactions among different modalities.
Transformers can selectively focus on relevant parts of the input data from each modal-
ity by utilizing attention mechanisms [43], thus extracting the most informative features
from every source [44]. This allows for more effective fusion of multimodal information,
leading to enhanced performance in tasks such as image classification, segmentation, and
sequence modeling across modalities. A multimodal fusion transformer (MFT) network
featuring a multihead cross-patch attention mechanism was proposed by S. K. Roy et al. [45]
for hyperspectral image-based land-cover classification augmented with data from other
modalities such as LiDAR and synthetic aperture radar (SAR). Transformers have also
been used with heterogeneous modalities such as audio–visual modalities for emotion
recognition [46]. Using a CNN encoder and transformer decoder for feature extraction, L.
Boussioux et al. [47] developed a tropical cyclone tracking and intensity estimation system
using visual data from a reanalysis dataset and historical statistical data. Y. Luo et al. [48]
used mixed-attention operations to utilize relatively dominant modality RGB-Thermal
tracking in varying environmental conditions to achieve more robust tracking performance
compared to single modality tracking systems. This shows that attention mechanisms
can enable modality-specific processing, allowing the model to assign varying importance
levels to different modalities based on task relevance.

Despite the advancements in multimodal transformer models, visual transformers
suitable for aerial imagery require significantly more data compared to their CNN coun-
terparts [49,50]. This poses a limitation on the applicability of transformers for smaller
datasets. This study addresses this challenge by introducing a modality utilization-based
training method for traditional multimodal neural network architectures. This method
aims to regulate the utilization of various input modalities during training, effectively
addressing issues such as modality utilization imbalance and hyperparameter mismatch
between modalities. Moreover, the field of multimodal aerial imagery suffers from modality
utilization imbalance [14,35,51], which is addressed in this work.

3. Method

The aim of the proposed method is to regulate a multimodal network’s utilization
of its input modalities. This can be achieved by measuring the current utilization of each
modality and minimizing the difference between the current and a target utilization for
a modality.

3.1. Modality Utilization Metric

The modality utilization (MU) metric, proposed in [14], provides a method to quantify
a network’s utilization of each modality. The MU metric was inspired by the permutation
feature importance [52,53]. Breaking the association between an input modality and the
network’s output, the modality utilization is calculated by observing the discrepancies in
the multimodal fusion network output when compared to the original dataset.
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Assume that there is a dataset D with M modalities and N samples, and a trained
multimodal network Fθ trained on this dataset. Figure 1 shows an example of the dataset
and multimodal network with 4 modalities. A forward pass with dataset D on the network
Fθ will return the loss (L), which is the expected loss L of the network Fθ :

L = E(L{Fθ ,D}) (1)

Figure 1. Computing modality utilization by randomly shuffling a modality Mi within the dataset to
break the association between the input modality Mi and the output Y.

The modality utilization score for the ith modality (Scorei) is computed by breaking the
association between the input modality Mi and the network output Y. This is performed
by randomly shuffling the samples of the modality Mi within the dataset D while keeping
the samples of the remaining modalities (Mj where j ̸= i) unchanged. A forward pass with
the modified dataset Di on the network Fθ will return a new loss (Li) of the network Fθ :

Li = E(L{Fθ ,Di}) (2)

The modality utilization score for the ith modality can then be calculated by observing
the discrepancy between the loss L and the new loss Li:

Scorei = |L − Li| (3)

A larger MU score implies the network performance changed significantly due to
changes in the modality Mi, indicating that the network heavily relies on this modality.
A smaller MU score implies that the network performance did not change significantly
due to changes in the modality Mi, suggesting that the network has low utilization of this
modality. The MU score can be calculated for each modality and normalized to obtain the
modality utilization metric for each modality. The modality utilization MUi ranges from
0.0 to 1.0, providing a percentage utilization of the network Fθ on the ith modality:

MUi =
Scorei

∑M
j=1 Scorej

=
|L − Li|

∑M
j=1 |L − Lj|

(4)

Algorithm 1 summarizes the modality utilization computation process. The MU
metric computation is further explained in more detail with validation and ablation studies
in [14]. This metric has also been extended to the reinforcement learning domain, providing
valuable insights into the reinforcement learning agents’ action policies [54].
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Algorithm 1: Modality Utilization
Initialize the multimodal fusion network Fθ , learned model parameters θ, task
dataset D;

Compute the network loss L via forward pass with dataset D, Equation (1);
for each modality Mi do

Randomly shuffle the samples of modality Mi while keeping the modalities
Mj, j ̸= i unchanged;

Compute the network loss Li via forward pass with the modified dataset Di,
Equation (2);

end
for each modality Mi do

Compute Modality Utilization (MUi) using MUi =
|L−Li |

∑M
j=1 |L−Lj |

, Equation (4);

end

3.2. Modality Utilization-Based Training

The modality utilization metric can be leveraged to regulate a multimodal fusion
network’s utilization of certain modalities. A network is trained by minimizing a loss
function that encapsulates how well the network is performing on a given task, such as
classification, segmentation, object detection, and regression. This loss function can be
augmented with a second term that minimizes the mean squared error of the current
modality utilization (MUcurr) of the focus modality and the set target modality utilization
(MUtarg). For a generic multimodal fusion network task, the loss function is as follows:

LTotal = Ltask + λL ∗ Lmu (5)

LTotal = Ltask + λL ∗ MSE(MUcurr, MUtarg) (6)

where Ltask is the task loss, Lmu is the modality utilization loss, and λL is a scaling loss
factor. Higher λL emphasizes maintaining target modality utilization for a focus modality,
while lower values prioritize solving the fusion network task. Extremely high λL may
overemphasize maintaining modality utilization at the expense of solving the fusion task,
while λL = 0 trains the multimodal fusion network conventionally, without modality
utilization-based training.

The modality utilization-based training method targets the decision layers of the fusion
network to regulate the utilization of the fusion network on its input modalities. Thus, pre-
trained frozen weights from the unimodal models are used as feature extractors FEi(Mi)
(highlighted in red in Figure 2), and only the decision layers DL are trained (highlighted in
green in Figure 2). This approach ensures that the quality of the feature embeddings from
each modality is not affected by the modified loss function while allowing for a change in
network utilization of its various input modalities.

Algorithm 2 summarizes the modality utilization-based training for the multimodal
fusion network. The proposed method compares the current modality utilization of the
focus modality with the target modality utilization and optimizes the network to maintain
the target utilization while solving the fusion network task.
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Algorithm 2: Modality utilization-based training.
Initialize the multimodal fusion network Fθ , pre-trained feature extractors (FEi),

task dataset D, focus modality m f , loss factor λL, and target modality utilization
MUtarg;

Load the parameters for pre-trained feature extractors (FEi) for each modality;
Freeze the pre-trained feature extractors (FEi);
for each training step do

Sample a batch of data D′ from dataset D;
Compute the network loss L = Ltask via forward pass with dataset D′,
Equation (1);

for each modality Mi do
Randomly shuffle the samples of modality Mi while keeping the modalities

Mj, j ̸= i unchanged;
Compute the network loss Li via forward pass with the modified dataset
Di, Equation (2);

end
for each modality Mi do

Compute Modality Utilization (MUi) using MUi =
|L−Li |

∑M
j=1 |L−Lj |

, Equation (4);

end
Compute loss for back propagation using LTotal = Ltask + λL ∗ Lmu,
Equation (6);

Train the multimodal fusion network Fθ to minimize loss LTotal
end

Figure 2. Modality utilization-based training targets the decision layers while using pre-trained
feature extractors with frozen weights.

3.3. Loss Factor Warm-Up

The proposed training method leverages pre-trained feature extractors to independ-
ently extract feature embeddings from each modality. These embeddings are then con-
catenated and utilized to train the decision layers initialized randomly as illustrated in
Figure 3. The initialization of the network plays a crucial role in its convergence towards
the global minimum. Initially, both the task loss (Ltask) and the modality utilization loss
(Lmu) are expected to be high. This early stage makes the training process susceptible to
being pushed in a local minimum due to the high modality utilization loss (Lmu) compared
to the task-specific loss.
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Figure 3. Visualization of multimodal fusion network’s gradient descent on the loss surface of
the fusion network task. Optimizing Lmu from the very beginning can push the network in the
local minima.

This issue can be resolved by adopting a slow start or a warm-up phase for the loss
factor. Setting the loss factor to zero in the initial phase of training allows the network to
focus solely on the task loss, gradually ramping up the loss factor after a certain number
of training steps stabilizes the modality utilization-based training. A clipped exponential
function can provide the desired behavior for the loss factor. The loss factor λL(i) for the
ith training step is as follows:

λL(i) = max(0, λL_max(1 − eβ(δ−i)) (7)

where λL_max is the maximum value of the loss factor, β is the buildup rate of the loss
factor from 0 to λL_max, and δ is the buildup delay when the loss factor starts increasing
exponentially from zero. Figure 4 shows a visualization of the exponential-based loss factor
function and hyperparameters. An understanding of the complexity of the task and the
architecture of the fusion network can guide the selection of the hyperparameter values.

Figure 4. Clipped exponential function-based for loss factor warm-up for MU-based training.

The maximum value of the loss factor λL_max dictates the amount of emphasis placed
on maintaining the target modality utilization. Given that the computed MUcurr and
MUtarg range between 0.0 and 1.0, Lmu (the mean squared error between MUcurr and
MUtarg) also ranges between 0.0 and 1.0. Therefore, the maximum value of the loss factor
λL_max must be selected such that the scaled modality utilization loss term λL_max × Lmu is
comparable to the range of the loss of the fusion network task Ltask. A much larger value
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of λL_max can render Ltask insignificant, causing the network to fail to converge properly.
Conversely, a much smaller value of λL_max will make the scaled modality utilization loss
term λL_max × Lmu insignificant, essentially resulting in behavior similar to traditional
machine learning training methods.

The buildup rate of the loss factor β dictates how quickly the value of λL(i) climbs
from 0 to λL_max. An aggressive value of β = 0.5 is generally a good starting point, as
minimal differences in performance are observed with different values of β.

The buildup delay δ is the training step at which the loss factor starts increasing
exponentially from 0 to λL_max. The ideal value of δ heavily depends on the complexity of
the task and the architecture of the fusion network. The fusion network’s decision layers
DL must be trained sufficiently to avoid falling into a local minimum before targeting a
modality utilization for the focus modality.

3.4. Research Questions

The main research questions for this study are as follows:

• RQ1: Can we leverage the modality utilization metrics during training to regulate a
network’s reliance on a dominant modality?

• RQ2: Does the modality utilization-based training method improve the overall noise
robustness of multimodal fusion networks?

Two hypotheses are proposed to address these questions:

Hypothesis 1 (H1.) The fusion network, trained with modality utilization-based methods, will
effectively maintain the utilization of the focus modality within a margin of error of ±10% in
relation to the target utilization.

Hypothesis 2 (H2.) The noise robustness of a fusion network, trained using a modality utilization-
based training method, will vary depending on the target utilization levels of input modalities when
noise is introduced to the input modalities.

4. Experimental Design
4.1. Datasets and Network Architecture

The modality utilization-based training method for multimodal fusion networks has
been validated on a classification task using the NTIRE21 dataset [15]. The presented
method is not limited to aerial imagery classification problems and can be employed
to different domains and machine learning problems. The versatility of the method is
showcased on an image segmentation task using the MCubeS dataset [16].

4.1.1. Classification Task

The NTIRE21 dataset [15] presents a classification problem in the domain of aerial
imagery. The dataset consists of aerial views of 10 classes of vehicles: sedan, SUV, pickup
truck, van, box truck, motorcycle, flatbed truck, bus, pickup truck with trailer, and flatbed
truck with trailer. The multimodal dataset features two modalities: (i) Electro-Optical
imagery (EO), and (ii) synthetic aperture radar imagery (SAR). Electro-Optical imagery
(EO) is a still image photographic sensing, where the incoming light is converted into
electrical signals. Synthetic aperture radar (SAR) is an active imaging method, where the
sensor uses microwave radar signals emitted towards Earth to capture surface properties.
Figure 5 provides a preview of the NTIRE21 dataset.

The EO modality can capture more information during the day with clear skies;
however, the data from the SAR modality may be more reliable during cloudy days or at
nighttime. Information from different modalities may be more useful in certain scenarios,
and the overutilization of a single dominant modality has the potential to drastically
degrade the multimodal network’s performance with noisy data.
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Figure 5. NTIRE 2021 Multimodal Aerial View Object Classification Challenge Dataset [15].

Unimodal networks for EO and SAR modalities were trained with ResNet18 [55] as
the backbone of the network to obtain the pre-trained feature extractors for the multimodal
fusion network. The multimodal fusion network (see Figure 6) consisted of two ResNet18-
based pre-trained feature extractor branches for each modality, followed by a flattening
layer, concatenation, and a fully connected layer with 512 neurons and a softmax activation
function for classification. The network was trained over 250 epochs with an Adam
optimizer and a learning rate of 0.001. A significant class imbalance exists in the NTIRE21
dataset, with the Sedan class consisting of 234,209 samples while the Bus class consisting
of only 624 samples. To address this, only the first 624 samples from each class were used
for this study. Specifically, 524 samples from each class were used for training, while
100 samples were used for testing. Models with the highest classification accuracy and the
lowest modality utilization loss (Lmu) are saved for further analysis. Additionally, early
stopping is employed to prevent overfitting. Figure 7 provides an intuitive demonstration
of the predicted classification on the NTIRE21 dataset using the Multimodal Aerial View
Object Classification Network.

Figure 6. NTIRE 2021 Multimodal Aerial View Object Classification Network with ResNet18 as
the backbone.

Figure 7. Visualization of NTIRE21 dataset classification using Multimodal Aerial View Object
Classification Network.
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4.1.2. Image Segmentation Task

The MCubeS dataset [16] presents an image segmentation task in the domain of mater-
ial segmentation in street scenes. The dataset consists of street scenes from a viewpoint on
a road, pavement, or sidewalk containing 20 classes of materials: asphalt, concrete, metal,
road marking, fabric, glass, plaster, plastic, rubber, sand, gravel, ceramic, cobblestone,
brick, grass, wood, leaf, water, human body, and sky. The multimodal dataset features four
modalities: (i) RGB camera (RGB), (ii) Angle of Polarization (AoLP), (iii) Degree of Polariz-
ation (DoLP), and (iv) Near Infrared (NIR). Figure 8 provides a preview of the MCubeS
dataset. The RGB modality alone cannot capture the necessary information to identify
different materials in an image. Different lighting conditions may make certain materials
indistinguishable. Thus, other modalities aid in enhancing the overall performance of the
multimodal image segmentation network.

Figure 8. MCubeS Multimodal Material Segmentation Dataset [16].

Unimodal networks for the RGB, AoLP, DoLP, and NIR modalities were trained with
U-Net [56] as the backbone of the network to obtain the pre-trained feature extractors for
the multimodal fusion network. The multimodal fusion network (see Figure 9) consisted
of four UNet-based pre-trained feature extractor branches for each modality, followed
by a concatenation layer, two batch normalization and 2D convolution layers alternately,
and a ReLU activation function for image segmentation. The two 2D convolution layers
comprised a 3 × 3 × 300 and 1 × 1 × 20 filter size, respectively, with a stride of 1. Training
lasted 500 epochs with SGD optimizer (lr: 0.05, momentum: 0.9) on a dataset split into
302 training, 96 validation, and 102 testing samples. Models with the highest mean Inter-
section over Union (mIoU) and the lowest modality utilization loss (Lmu) are saved for
further analysis. Additionally, early stopping is employed to prevent overfitting. Figure 10
provides an intuitive demonstration of the image segmentation on the MCubeS dataset
using the Multimodal Material Segmentation Network.

Figure 9. MCubeS Multimodal Material Segmentation Network with UNet as the backbone.
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Figure 10. Visualization of MCubeS dataset image segmentation using the Multimodal Material
Segmentation Network.

5. Results
5.1. Ablation Studies

The presented modality utilization-based training method is first validated on the
NTIRE21 dataset and MCubeS dataset without a loss factor warm-up. All experiments were
conducted on Rochester Institute of Technology’s research computing server [57] equipped
with an Intel Xeon Gold 6150 CPU running at 2.7 GHz, 32 GB of RAM and NVIDIA P4
and A100 GPU’s for NTIRE21 dataset and MCubeS dataset, respectively. The software
environment included Red Hat Enterprise Linux 7 as the operating system, Python 3.8.11,
and PyTorch 1.10.1 for the deep learning framework. When trained using the traditional
method, the multimodal fusion network in NTIRE21 relies heavily on the EO modality,
making it the dominant modality (see Table 1) [14]. The utilization of the fusion network in
the MCubeS dataset is more evenly distributed when trained using the traditional training
method, with RGB as the most utilized modality, while NIR is the least utilized modality.
These modality utilization measures are used as the baseline for this study. The NTIRE21
network overemphasizes the EO modality while not utilizing the SAR modality at all. Such
a utilization imbalance can be rectified using the presented modality utilization-based
training method.

Table 1. Performance and modality utilization (MU) for the NTIRE21 and MCubeS datasets [14].

Dataset Modality Performance Modality Utilization (MU) (%)

Accuracy
(%) EO SAR

NTIRE21
EO 97.5 100.0 -

SAR 84.9 - 100.0
EO-SAR 97.8 99.59 0.40

mIoU RBG AoLP DoLP NIR

MCubeS

RGB 0.318 100.0 - - -
AoLP 0.266 - 100.0 - -
DoLP 0.262 - - 100.0 -
NIR 0.270 - - - 100.0

RGB-AoLP-DoLP-NIR 0.374 34.5 19.0 30.9 15.6
AoLP-DoLP-NIR 0.351 - 67.3 21.0 11.7

Given a target utilization MUtarg and loss factor λL, the utilization of a multimodal
fusion network on the input focus modality m f can be manipulated using Algorithm 2.
The classification network for NTIRE21 dataset is trained with SAR as the focus modality
(m f = SAR), and loss factor λL = 100 for different values of target utilization MUtarg,
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shown in Figure 11. The network can be observed maintaining the SAR modality utilization
MUSAR (green line) close to the target utilization MUtarg (black dashed line) while main-
taining a performance similar to the baseline methods. The network performance converges
to the baseline performance quickly since pre-trained frozen feature extractors are used
for this study. Table 2 summarizes the performance and the modality utilization of the
network on EO and SAR modalities achieved for different MUtarg. A drop in performance
is observed when the network starts to rely heavily on the non-dominant modality. The
performance is bounded by the unimodal SAR performance at MUtarg = 100.0%. A small
difference can be noticed between target modality utilization SAR MUtarg and MUSAR as
the modality utilization-based training method minimizes the difference between MUtarg
and MUcurr while also solving the fusion network task. A mean difference of 3.73% can be
observed between SAR MUtarg and MUSAR with a maximum of 7.10% and minimum of
0.59% difference.

Table 2. Multimodal fusion network trained on the NTIRE21 dataset for different target utilization
MUtarget with SAR as the focus modality. Highest value is represented by a bold values.

SAR MUtarg
(%)

Acc.
(%)

MUEO
(%)

MUSAR
(%)

0.0 97.1 99.4 0.6

12.5 97.6 92.8 7.2

25.0 97.7 82.1 17.9

37.5 97.7 63.5 36.5

50.0 97.2 47.0 53.0

62.5 96.8 31.7 68.3

75.0 95.3 19.7 80.3

87.5 92.2 13.1 86.9

100.0 84.4 4.8 95.1

Since the measure of MU is a percentage utilization with respect to all the input
modalities, the utilization of the EO modality reduces with increasing utilization of the
SAR modality. Similar network behavior can be observed in Table 3, where the experiment
is repeated with EO as the focus modality (m f = EO). A mean difference of 3.76% can
be observed between EO MUtarg and MUEO with a maximum of 6.90% and minimum of
0.50% difference. The effects of information redundancy in the different modalities can also
be observed in Tables 2 and 3. As the utilization of the dominant modality decreases, the
utilization of the non-dominant modality increases; however, the accuracy of the model
stays unchanged for MUEO > 50%. Redundant information allows for the reduction in the
utilization of one modality up to the point where the unique information in that modality
begins to be compromised.

The value of the loss factor λL determines the extent to which the MU-based train-
ing method emphasizes solving the fusion network task and maintaining the current
modality utilization MUcurr close to the target utilization MUtarg. The effects of the
loss factor λL on the modality utilization and network performance are demonstrated in
Figure 12. The NTIRE21 fusion network was trained with m f = SAR, MUtarg = 50.0%, and
λL = 0.0, 20.0, 100.0, 10000.0. The MU-based training method works like the traditional
machine learning training method with λL = 0, eliminating the modality utilization loss
term from Equation (5). The NTIRE21 fusion network thus behaves similarly to the baseline
network with λL = 0. As the value of λL is increased, the network maintains the MUcurr
closer to MUtarg. However, a really high value of λL can lead to catastrophic failure, as
the network only focuses on maintaining modality utilization, completely ignoring the
task-specific loss as seen in Figure 12 with an extreme value of λL = 10, 000.0.
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Figure 11. Effects of different target utilization MUtarget on modality utilization and classification
accuracy with modality utilization-based training method in the NTIRE21 dataset. Loss factor
λL = 100.0 with SAR as the focus modality.

Table 3. Multimodal fusion network trained on NTIRE21 dataset for different target utilization
MUtarget with EO as the focus modality. Highest value is represented by a bold values.

EO MUtarg
(%)

Acc.
(%)

MUEO
(%)

MUSAR
(%)

0.0 84.4 3.9 96.1

12.5 92.0 14.3 85.7

25.0 95.3 19.5 80.5

37.5 96.8 30.6 69.4

50.0 97.2 47.0 53.0

62.5 97.6 63.5 36.5

75.0 97.7 79.4 20.6

87.5 97.5 94.4 5.6

100.0 97.1 99.5 0.5
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Figure 12. Effects of the loss factor λL on modality utilization and classification accuracy with
modality utilization-based training method in NTIRE21 dataset. Target utilization MUtarget = 50%
with SAR as the focus modality.

The modality utilization-based training method can be applied to a diverse range of
multimodal machine learning applications. The method is also validated on the MCubeS
image segmentation dataset. The multimodal network is trained for target utilization
MUtarget with a loss factor λL = 100.0, and RGB (the dominant modality) as the focus mod-
ality while observing the mean Intersection over Union (mIoU) and modality utilization of
the four input modalities. The results in Table 4 show that the presented method is able to
drive the utilization of the network close to the set target for the RGB while maintaining
good performance. Since RGB is used as the focus modality, the utilization of the other
three modalities is decided by the multimodal network. A mean difference of 4.61% can be
observed between RGB MUtarg and MURGB with a maximum of 9.90% and minimum of
1.20% difference. Contrary to modality utilization results from the previous study [14] in
Table 1, AoLP appears to be the non-dominant modality instead of the NIR modality with
consistent low utilization. Across Tables 2–4, a mean difference of 4.03% can be observed
between MUtarg and MUcurr with a maximum of 9.90% and minimum of 0.50% difference.

Table 4. Multimodal fusion network trained on MCubeS dataset for different target utilization
MUtarget with loss factor λL = 100.0 and RGB as the focus modality. Highest value is represented by
a bold values.

RGB MUtarg (%) mIoU (%) MURGB (%) MUAoLP (%) MUDoLP (%) MUN IR (%)

0.0 0.400 1.2 4.2 54.4 40.2

12.5 0.403 6.7 0.7 34.2 58.4

25.0 0.388 18.6 10.8 7.3 63.3

37.5 0.393 39.4 10.8 16.5 33.3

50.0 0.397 54.9 15.9 0.1 29.1

62.5 0.394 68.9 10.5 8.1 12.5

75.0 0.387 84.9 5.4 0.5 9.2

87.5 0.407 89.2 5.1 2.6 3.1

100.0 0.403 96.7 1.0 0.9 1.4
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The results presented in this section were generated over a single fold without modu-
lating λL via loss factor warm-up. As the study is scaled to multifold validation, instability
in the modality utilization-based training method can be observed. A five-fold validation
for modality utilization-based training methods on the NTIRE21 dataset with m f = SAR,
λL = 100.0, and MUtarg = 0.0 reveals that the training method can become unstable with
random utilization and data splits, highlighted in red in Table 5.

Table 5. Five-fold validation for modality utilization-based training methods without loss factor
warm-up on NTIRE21 dataset with m f = SAR, λL = 100.0, and MUtarg = 0.0. Instability can be
observed in folds 2, 3, and 5. Catastrophic failures in training are represented by red values.

SAR MUtarg (%) Fold Acc. (%) MUEO (%) MUSAR (%)

0.0 1 97.7 99.9 0.1

0.0 2 44.5 57.8 42.2

0.0 3 51.1 55.5 44.5

0.0 4 98.4 99.9 0.1

0.0 5 48.8 55.9 44.1

An untrained network is prone to getting pushed into a local minima by the modality
utilization loss term in Equation (5). The loss factor warm-up presented in Section 3.3
becomes necessary to stabilize the modality utilization-based training method.

5.2. Validation Loss Factor Warm-Up

The network parameters with pre-trained feature extractors initially have a smaller
task-specific loss, while they may have a larger modality utilization loss. A much higher
modality utilization loss in the beginning can push the network away from the minima. The
loss factor warm-up allows the network to improve the performance on the network task
by keeping λL = 0 prior to exponentially increasing the λL value. The five-fold study on
the NTIRE21 dataset shown in Table 5 is repeated with the loss factor warm-up to validate
the loss factor warm start-up. Since the NTIRE21 dataset uses pre-trained frozen data, the
network parameters can quickly converge to the global minimum. Thus, a buildup rate
of β = 0.5 and a buildup delay of δ = 0.0 are used, achieving stable performance with
consistent results, demonstrated in Table 6.

Table 6. Five-fold validation for modality utilization-based training methods stabilized with loss
factor warm-up on NTIRE21 dataset with m f = SAR, λL = 100.0, and MUtarg = 0.0.

SAR MUtarg (%) Fold Acc. (%) MUEO (%) MUSAR (%)

0.0 1 97.7 99.4 0.6

0.0 2 96.9 99.2 0.8

0.0 3 97.6 99.3 0.7

0.0 4 97.2 99.4 0.6

0.0 5 97.0 99.6 0.4

The buildup delay δ initially suppresses the modality utilization-based training, focus-
ing on the fusion network. Since the feature extractors in the study are pre-trained, a value
of δ = 0 is used. The buildup rate β dictates how quickly the loss factor λL builds up from
0 to λL_max in Equation (7). A large value would aggressively drive λL to the maximum
value, making the network focus on maintaining the target utilization early. A smaller
value would allow the network to focus on the fusion network task for longer; however, it
focuses less on maintaining the target utilization. Figure 13 shows the effects of different
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buildup rates β on the NTIRE21 classification dataset. A slower building with β = 0.01
shows a weaker tendency to maintain the target utilization at SAR MUtarg = 50%.

Figure 13. Effects of the loss factor buildup rate β on modality utilization and classification accur-
acy with modality utilization-based training method in the NTIRE21 dataset. Target utilization
MUtarget = 50%, Maximum Loss Factor λL_max = 100, and buildup delay δ = 0 with SAR as the
focus modality.

5.3. Studying Noise Robustness Properties of the Modality Utilization-Based Training Method

The presence of noise in the data can negatively impact the performance of the mul-
timodal network. Noise in one or more modalities may be introduced due to environmental
changes or sensor failure. The overutilization of a singular dominant modality makes the
multimodal network susceptible to noise in the dominant modality while underutilizing
the non-dominant modality. In the case of the NTIRE21 dataset, the EO modality is the
dominant modality; however, it is a passive sensing modality that cannot provide usable
data during nighttime or on a cloudy day. A more balanced utilization of the input mod-
alities can provide robustness against noise in a singular dominant modality. Modality
utilization-based training provides a method to guide the utilization of the multimodal
network on its input modalities, improving the network’s overall robustness against noise.

A noise ablation study was conducted with the NTIRE21 dataset by adding Gaussian
noise with mean 0 and variance of {0.06, 0.09, 0.12} to the EO modality, the SAR modality,
and both modalities during inference. The effects of noise were studied on networks trained
with different levels of SAR utilization, i.e., 0.0%, 12.5%, 25.00%, 37.5%, 50.0%, 62.5%, 75.0%,
87.5%, and 100.0%. The results in Figure 14 show that the overall accuracy is the highest
with Clean EO and Clean SAR modalities (indicated by blue) and the lowest with Noisy
EO and Noisy SAR (indicated by red). This behavior is expected, as the addition of noise in
the data degrades the performance of the network.

When noise is added to only the SAR modality (indicated by green), the performance
of models trained with higher SAR utilization is worse than that of the models trained to
have higher utilization with the EO modality. Similarly, when noise is added to only the
EO modality (indicated by orange), the performance of models trained with higher SAR
utilization is better than that of the models trained to have higher utilization with the EO
modality. Figure 14 further reveals that network with MUEO = 75% and MUSAR = 25%
performs almost the same as the Noisy-EO/Clean-SAR and Clean-EO/Noisy-SAR input
modalities. The network exhibits better robustness against noise in either of the modalities
compared to networks with other utilizations without significant degradation in performance,
indicated by the clean EO and clean SAR performance. This property can be noticed across
the different noise levels introduced to the data during inference time.

The fusion network trained with the traditional method self-optimizes to utilize 99.59%
of the dominant EO modality and 0.40% of SAR non-dominant SAR modality as indicated
in Table 1. Table 7 demonstrates that when noise is present in the dominant modality during
inference time, a 75.0% to 87.5% utilization of the EO modality offers better robustness
towards noisy dominant modality with minimal loss in accuracy. Compared to traditional
training methods that achieve 99.59% EO utilization with 73.7% accuracy under heavy noise
conditions (noise variance = 0.12), a network utilizing 75.0% EO performs significantly
better with 81.4% accuracy. The network (EO MUtarg = 75.0%) also achieves an average
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accuracy of 85.0% across various noise levels, exceeding the traditional method’s average
accuracy of 81.9%.

Figure 14. Effects of Gaussian noise with mean=0 and variance={0.06, 0.09, 0.12} in the EO modality,
the SAR modality, and both modalities during inference on networks trained with different levels of
SAR utilization.

Table 7. Effects of Gaussian noise with mean=0 and variance={0.06, 0.09, 0.12} in the EO modality
(dominant modality) during inference on networks’ trained performance accuracy with different
levels of EO utilization.

EO MUtarg No Noise
Noise

Var. = 0.06
Noise

Var. = 0.09
Noise

Var. = 0.12
Average

Acc.

100.0 95.1 84.4 74.4 73.7 81.9

87.5 94.6 86.8 74.9 80.3 84.2

75.0 92.8 85.7 80.1 81.4 85.0

62.5 91.8 83.7 80.2 82.1 84.5

50.0 89.8 80.8 82.1 82.3 83.8

37.5 89.1 83.8 78.9 80.9 83.2

25.0 91.2 83.9 79.5 81.1 83.9

12.5 92.2 86.5 81.2 81.7 85.4

0.0 90.3 85.9 83.3 83.0 85.6
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5.4. Determining Target Modality Utilization

The target modality utilization MUtarg for the focus modality m f is a critical hyper-
parameter, as it dictates how much the trained network will rely on the focus modality
m f . Overutilization of the non-dominant modality or underutilization of the dominant
modality can lead to network performance degradation. On the other hand, overutilization
of the dominant modality or underutilization of the non-dominant modality can affect the
robustness to noise in the dominant modality. Thus, choosing an appropriate MUtarg is
critical; however, it is a non-trivial problem to determine an appropriate target utilization
MUtarg value without observing the behavior of the network.

Problems such as mismatched hyperparameters across different multimodal branches
or overutilization of a single dominant modality are not present in unimodal networks,
which are trained on data from a single modality. However, their performance is limited
to the information present in those modalities. Thus, unimodal network performance can
provide heuristic insights into how well a modality represents information in the context
of the fusion network task. Additionally, a multimodal network trained using traditional
training methods can be used to determine the multimodal network’s utilization tendencies
using the modality utilization metric as seen in Table 1.

Observing unimodal and multimodal network performance that is trained using
traditional training methods provides insight into network utilization and information in
each modality as viewed by the fusion network. This can guide the selection of the target
modality utilization MUtarg for the focus modality m f while balancing the utilization of
the dominant and the non-dominant modalities. Furthermore, an array of noise robustness
tests can reveal certain target utilizations, where the network may be more robust against
noise present in one or multiple modalities as shown in Section 5.3. This is crucial for
aerial imagery, where varying weather conditions can affect modality usability, especially
in datasets lacking diverse weather conditions during training.

6. Discussion

The modality utilization-based training method aims to regulate the utilization of
multimodal networks on their input modalities. Hypothesis H1 predicts that the fusion
network, trained with modality utilization-based methods, will effectively maintain the
utilization of the focus modality within a margin of error of ±10% in relation to the target
utilization. In the results in Tables 2–4, a mean difference of 4.03% can be observed between
MUtarg and MUcurr with a maximum of 9.90% and minimum of 0.50% difference, thus
supporting hypothesis H1. The presented method successfully leverages the modality
utilization metric to encourage the multimodal network to minimize the mean squared
error between the current utilization and maintain a set target for a focus modality. The
method alleviates the problem of the overutilization of a singular dominant modality by
balancing the utilization among the different input modalities.

However, there needs to be an equilibrium between the network focusing on solving
the fusion network task and maintaining the target modality utilization, dictated by a
loss factor λL. The network optimizes over two different goals, which can drive the
network parameters in two different directions. The initial phase of the training process
is particularly sensitive, and an instability is observed in the modality utilization-based
training method as shown in the results in Table 5. A delayed implementation of the
modality utilization-based training method through a warm startup stabilizes the training
process, achieving consistent performance.

The aerial imagery classification task with the NTIRE21 dataset presents a case study
where the dataset inherently causes a multimodal network to utilize only the dominant EO
modality while ignoring the non-dominant SAR modality. The EO modality can provide
more information during the daytime with clear sky. However, the SAR modality is
more optimal for cloudy weather conditions since the active sensing method can capture
information through the clouds. The absence of cloudy data samples leaves out crucial
information from the network, driving the network to rely on a singular modality. Expert
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designers can employ the modality utilization-based training method to train the network
correctly even with an imperfect dataset.

The method allows the multimodal network to be more robust towards the presence
of noise, such as clouds and other weather conditions, where the EO modality becomes
suboptimal. Hypothesis H2 predicts that the noise robustness of a fusion network, trained
using a modality utilization-based training method, will vary depending on the target
utilization levels of input modalities when noise is introduced to the input modalities. The
results in Figure 14 demonstrate that the presented method can be used to make a network
more robust to the presence of noise in one or more modalities by making it less reliant on
a dominant modality. The network trained for lower SAR modality utilization performs
better than that with higher SAR modality utilization when noise is present in the SAR
modality. A similar trend is observed with the EO modality when noise is present in it.
This is further validated by Table 7, where a decrease in the utilization of the dominant EO
modality decreases the network accuracy when no noise is present. However, the network
exhibits a greater degradation in accuracy with higher EO utilization when noise is present
in the dominant EO modality. The average optimal EO utilization is revealed to be in
the range of 75%–87.5%, leveraging the information from the dominant modality while
avoiding the overutilization of it. This is an improvement over the traditional training
method, which self-optimizes its utilization to be 99.59% utilization of the dominant EO
modality, shown in Table 1, making the network susceptible to noise. The array of tests
reveals that the network’s performance is degraded by different levels based on the target
utilization set for that network, thus supporting hypothesis H2. This indicates that there
exists an EO-SAR utilization ratio where the network will be equally robust to the presence
of noise in the EO or SAR modality, making it the ideal point to improve the overall network
noise robustness.

Choosing the optimal target utilization for a modality is critical, as higher utilization
of a non-dominant modality can result in poor performance, while overutilization of a
singular dominant modality can undermine the information gain from multiple modalities.
The unimodal performance of the network for each modality provides heuristic insight into
the amount of relevant information in that modality. Furthermore, a multimodal network
trained on all the modalities with traditional training methods can reveal how much the
network tends to rely on one or the other modality using the modality utilization metric.
The modality utilization metric, along with the unimodal performance, offers a holistic
understanding of the network and guides the decision of choosing the appropriate target
utilization. The aim while choosing the target utilization is to mitigate any overutilization
of the network on a single modality, and the target utilization selection process must be
motivated by this aim. The target utilization selection can also be made based on the noise
robustness properties as demonstrated in Section 5.3; however, this requires conducting an
array of tests whose design may be impacted by the number of modalities in the dataset.

The presented method was also validated on an image segmentation dataset in the do-
main of multimodal material segmentation. This showcases the versatility and applicability
of the modality utilization-based training method to a diverse set of multimodal machine
learning applications. Furthermore, this method is not limited to multimodal supervised
learning applications and can be extended to the domain of reinforcement learning, offering
promising avenues for future research and practical implementation in various domains.
Overall, this study contributes significantly to advancing multimodal fusion networks,
enhancing the utilization of diverse data modalities in machine learning applications.

7. Conclusions and Future Work

In conclusion, this work presented a modality utilization-based training method that
can be employed to guide the utilization of a multimodal fusion network on its input
modalities. The method leverages the modality utilization metric and introduces a mod-
ality utilization loss term to minimize the error between the current utilization of a focus
modality and a set target. The method was validated on an aerial imagery classification
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dataset and an image segmentation dataset. The results showed that the presented method
can successfully influence a multimodal network’s utilization of its input modalities, ef-
fectively maintains modality utilization within ±10% of the user-defined target utilization.
Moreover, the network’s robustness against noise in the input modalities was studied, a
prevalent challenge in practical scenarios. The method demonstrated higher resilience to
input noise affecting different sensing modalities in the NTIRE21 dataset, further enhancing
its practical utility. Specifically, networks trained with 75.0% EO utilization exhibited better
accuracy (81.4%) under noisy conditions (noise variance = 0.12) compared to traditional
methods utilizing 99.59% EO utilization (73.7%). Furthermore, the network maintained
an average accuracy of 85.0% across varying noise levels, outperforming the traditional
method’s average accuracy of 81.9%. Key contributions include the development of a
modality utilization-based training framework, tailored to address utilization imbalances
in multimodal fusion networks. The study also offers insights into enhancing network
robustness against input noise, advancing the practical utility of multimodal systems.

Future work will validate the approach on networks trained end to end, without
relying on pre-trained feature extractors. Additionally, conducting thorough validations on
datasets with more than two modalities will enhance the understanding of the interactions
between modality utilization and the information content in each modality. Exploring the
method’s application with target utilization for multiple modalities and extending it to
reinforcement learning are promising avenues for further research. Overall, the findings of
this study represent a significant step towards realizing the full potential of multimodal data
fusion in machine learning applications, offering promising avenues for future research
and practical implementation in diverse domains.
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Abbreviations
The following abbreviations are used in this manuscript:

MU Modality Utilization
EO Electro-Optical
SAR Synthetic Aperture Radar
RGB Red, Green and Blue
AoLP Angle of Polarization
DoLP Degree of Polarization
NIR Near Infra-red
targ Target
curr Current
FE Feature Extractor
m f Focus Modality
DL Decision Layer
M Modality
L Loss
D Dataset
Fθ Network parameters
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