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ABSTRACT
Efficient team design necessitates a comprehensive understanding
of human factors, encompassing abilities, limitations, and internal
states. In human-robot teaming research, recent efforts explore
integrating emotions, workload, fatigue, and stress into decision-
making using deep reinforcement learning. Despite promising re-
sults, the black-box nature of these algorithms raises questions
about the consistent reliance on human internal states or their con-
sideration as information or noise in the decision-making process.
This study introduces a state utilization (SU) metric to measure
the reliance of reinforcement-based agents on each state feature.
This metric is validated on data from the Cartpole environment
by OpenAI and a human-robot teaming experiment using NASA
MATB-II environment. The SU provides insight into the relevance
and usage of state features and human data modalities by the robot,
showing clear trends based on the nature of the tasks and offering
an understanding of why the RL agent takes certain actions. This,
in turn, enhances the explainability of the RL agent’s policy used
for human robot teaming.
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1 INTRODUCTION
Human’s complex and unpredictable behaviors significantly in-
fluence human-robot teaming dynamics, emphasizing the need to
comprehend individual agent’s abilities, adaptation, and decision-
making processes. Successful human-robot team design requires
an intimate understanding of these dynamics, including external
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states (such as position, velocity, head pose and gaze) and internal
states (such as emotions, workload, fatigue and stress) [15].

The human body is a sophisticated, self-adaptive system that
regulates internal states to respond to environmental factors, with
observable physiological signal changes. Some examples are hu-
man’s pupil dilating in response to the emotions like fear [13], an
increase in heart rate variability can indicate high levels of stress
[12], or heart rate and respiration rate are sensitive to cognitive
workload [11]. These physiological measurements provide an in-
direct measure of various human performance constructs, such as
fatigue [16], stress [8], and workload [9, 10]. Thus, a robot teammate
can greatly benefit from knowing the human teammate’s emotional
and physical states [7][14][2][17], similar to how human-human
teams operate [5].

The intricate relationship between human internal states and
human-robot team performance, coupled with the inherent un-
predictability of human behavior [3], creates uncertainties in how
robots utilize human data in decision-making. This challenge is
heightened in reinforcement-learning-based algorithms, known
for their limited transparency and explainability [22], impacting
human trust and overall team dynamics [18].

Addressing this research gap, our study builds on a previous
modality utilization metric [21], extending it to reinforcement learn-
ing. This work introduce the State Utilization (SU) metric that quan-
tifies the utilization of state features and human data modalities by
the robot, thus highlighting their importance and contributing to
improved explainability of the RL agent’s policy. The SU metric was
evaluated in the Cartpole environment by OpenAI gym, followed by
ablation studies. Applying this metric to data from a human-robot
teaming experiment on the NASA MATB-II [19][20], this study
identifies distinct trends that aligned with task characteristics.

This study’s contribution lies in quantifying the reliance of de-
cision networks on specific modalities, emphasizing their crucial
role in shaping the RL agent’s behavior. This insight paves the way
for refined decision-making mechanisms, enhancing overall perfor-
mance across diverse tasks and environments, and addressing the
critical need for transparency and trust in human-robot teaming
dynamics.

2 METHOD
The State Utilization (SU) metric is an extension of the Modality
Utilization (MU) metric [21], which was inspired by permutation
feature importance [1][6]. Given an RL decision network (such as
a Q network for Q-learning algorithm, or an actor network for
an actor-critic algorithm) 𝐹𝜃 and D𝑠𝑢 (a subset of replay memory
D𝑟𝑒𝑝𝑙𝑦 ) with𝑀 state features. State utilization 𝑆𝑈𝑖 is computed by
breaking the association between the input state feature 𝑆𝑛𝑖 and the
network output 𝑌 and calculating the resulting difference in output
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Figure 1: Example of permuting state feature samples 𝑆𝑛𝑖 to
break the association between the input state feature 𝑆𝑛𝑖 and
the decision network output 𝑌 .

𝑌 from the original batch data D𝑠𝑢 . SU metric is more accurate
with more samples, i.e., ideally D𝑠𝑢 should be the same as D𝑟𝑒𝑝𝑙𝑦 .

The association between a state feature 𝑆𝑛𝑖 and the output 𝑌
is broken by permuting/shuffling the corresponding state feature
(𝑆𝑛𝑖 ) randomly amongst the samples, while keeping the remain-
ing state feature (𝑆𝑛𝑗 , 𝑗 ≠ 𝑖) the same, as shown in Figure 1. Let
independent samples from the replay buffer in D𝑠𝑢 be of the form
D𝑠𝑢 = (𝑌, 𝑆𝑛1, 𝑆𝑛2, · · · , 𝑆𝑛𝑀 ) be

Sample(𝑎) = (𝑌 (𝑎) , 𝑆 (𝑎)
𝑛1 , 𝑆

(𝑎)
𝑛2 , · · · , 𝑆 (𝑎)

𝑛𝑀
)

Sample(𝑏 ) = (𝑌 (𝑏 ) , 𝑆 (𝑏 )
𝑛1 , 𝑆

(𝑏 )
𝑛2 , · · · , 𝑆 (𝑏 )

𝑛𝑀
)

A new permuted batch D𝑖 is then generated, where samples of
the 𝑖𝑡ℎ state feature in D𝑠𝑢 are permuted (𝑆 (𝑎)

𝑛𝑖
, 𝑆 (𝑏 )

𝑛𝑖
) as

Sample(𝑏 )
𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑,𝑖

= (𝑌 (𝑏 ) , 𝑆 (𝑏 )
𝑛1 , 𝑆

(𝑏 )
𝑛2 , · · · , 𝑆 (𝑎)

𝑛𝑖
, · · · , 𝑆𝑏𝑛𝑀 ) (1)

Let the output of the RL decision network 𝐹𝜃 be 𝑌 during inference
with the original batch data D𝑠𝑢 and 𝑌𝑖 during inference be with
the permuted batch data D𝑖 , where samples of i𝑡ℎ state feature
(𝑆 (𝑎)
𝑛𝑖

, 𝑆 (𝑏 )
𝑛𝑖

) are permuted:

𝑌 = 𝐹𝜃 (Sample(𝑏 ) ) (2)

𝑌𝑖 = 𝐹𝜃 (Sample(𝑏 )
𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑,𝑖

) (3)

The state utilization of the 𝑖𝑡ℎ state feature (𝑆𝑈𝑖 ) for the RL decision
network 𝐹𝜃 can be computed by observing the change in the model
output 𝑌 during inference with the original batch dataD𝑠𝑢 and the
permuted batch dataD𝑖 . Observing the euclidean distance between
𝑌 and 𝑌𝑖 for Q-learning algorithms or KL divergence for actor-critic
algorithms, a reduced discrepancy suggests that the rearrangement
of samples related to the 𝑖𝑡ℎ state feature minimally affects the
decision network’s output 𝑌 , indicating limited utilization of the
state feature. Conversely, an increased discrepancy implies that
shuffling the 𝑖𝑡ℎ state feature samples significantly influences the
decision network’s output 𝑌 , signifying a substantial utilization of
the state feature. State utilization of the 𝑖𝑡ℎ state feature (𝑆𝑈𝑖 ) is
then defined as:

𝑆𝑈𝑖 =
∥𝑌𝑖 − 𝑌 ∥∑𝑆
𝑗=1 ∥𝑌𝑖 − 𝑌 ∥

(4)

Algorithm 1: State Utilization for RL
Initialize the RL decision network 𝐹𝜃 , learned model
parameters 𝜃 , replay memory D𝑟𝑒𝑝𝑙𝑎𝑦 ;
Sample a batch of data D𝑠𝑢 from replay memory D𝑟𝑒𝑝𝑙𝑎𝑦 ;
Compute decision network output 𝑌 , Eq. 2;
for each state feature 𝑠𝑛𝑖 do

Randomly permute the samples of state feature 𝑠𝑛𝑖
while keeping the state features 𝑠𝑛𝑗 , 𝑗 ≠ 𝑖 unchanged;
Compute decision network output 𝑌𝑖 with permuted
state feature 𝑠𝑛𝑖 , Eq. 3;

end
for each state feature 𝑠𝑖 do

Compute State Utilization (𝑆𝑈𝑖 ) using
𝑆𝑈𝑖 =

∥𝑌𝑖−𝑌 ∥∑𝑆
𝑗=1 ∥𝑌𝑗−𝑌 ∥ , Eq. 4;

end

3 ABLATION STUDIES ON CARTPOLE
SU metric was validated on OpenAI Gym’s Cartpole environment, a
standard benchmark for reinforcing learning algorithms. The setup
involves a cart moving horizontally with an attached pole, aiming
to balance it. The system state includes cart position (𝑆𝑛0), velocity
(𝑆𝑛1), pole angular position (𝑆𝑛2), and pole angular velocity (𝑆𝑛3).
The agent can take two actions: apply a force to move the cart left or
right. Episodes conclude if the pole exceeds a specific angle or the
cart moves beyond a set range. Successful solving is maintaining
an average reward of 195 or higher over a continuous 100-episode
period.

Figure 2: Average Rewards and State Utilization (SU) across
episodes for the CartPole environment.

ADouble Deep Q-Network (DDQN) successfully solved the Cart-
pole environment. Figure 2 shows average rewards and state utiliza-
tion (computed using algorithm 1). D𝑖 had 1280 samples, ten times
the batch size of 128. The SU metric, assessed every 100 episodes,
highlights angular velocity (𝑆𝑛3) as the most utilized state feature,
while cart position (𝑆𝑛0) is the least utilized. Results indicate a dy-
namic shift in feature importance over time. Initially, 𝑆𝑛0 had over
20% utilization, dropping to nearly 0% after episode 1600, suggesting
redundant information.

The optimized policy disregards 𝑆𝑛0 entirely, and training the
RL agent without it led to expedited performance improvements,
as depicted in Figure 3. This highlights the potential for leveraging
a simplified state space for easier exploration. This raises questions
about the importance of information in individual state features and



Measuring State Utilization During Decision Making in Human-Robot Teams HRI ’24 Companion, March 11–14, 2024, Boulder, CO, USA

Figure 3: Average Rewards and State Utilization (SU) across
episodes for the CartPole environment without 𝑆𝑛0.

the extent to which agents rely on redundant or noisy data, insights
provided by the proposed state utilization metric. Additionally, the
agent was trained with an extra state feature, random uniform
distribution noise in the range [−1, 1].

Figure 4: Average Rewards and State Utilization (SU) across
episodes for the CartPole environment with a random noise
state feature (𝑆𝑛4).

In Figure 4, the RL agent quickly learned to ignore the noisy
state feature. However, solving the environment took longer due to
increased complexity, making the state space more challenging to
explore. The state utilization metric reveals the impact of redundant
and noisy information in the RL agent’s state space, offering insights
into the explainability aspect of reinforcement learning.

4 MEASURING UTILIZATION OF HUMAN
DATA IN HUMAN ROBOT TEAMING

Human-robot collaboration is essential for maximizing productiv-
ity, as robots excel in speed, precision, and hazardous tasks, com-
plementing human creativity and adaptability to enhance overall
efficiency. Recognizing teammates’ mental and emotional states in
teamwork improves collaboration and fluency, while acknowledg-
ing fatigue or workload anticipates potential performance decline.
However, this internal state information can be extremely noisy.
Thus, it is essential to understand if RL-based agents leverage this
information or learns to ignore it using the state utilization metric.
The potential insights of the SU metric are demonstrated through
analyzing the utilization of human data in a previous human-robot
teaming study [19][20].

4.1 Summary of previous study
The paper [19][20] introduces a human-aware decision-making
paradigm for enhancing human-robot collaboration in high-stress

scenarios using reinforcement learning (RL). It aims to adapt a
robot’s interactions based on human workload states, leveraging
the NASA Multi-Attribute Task Battery (MATB) environment [4]
(Figure 5) to simulate real-world challenges. Participants engage
in four concurrent tasks: Tracking, System Monitoring, Resource
Management, and Communications, representing scenarios like tar-
get tracking, system parameter monitoring, resource management,
and response to audio commands.

Figure 5: The NASA Multi-Attribute Task Battery-II Env.

Figure 6: Adaptive Human-Robot Teaming architecture with
human state estimates augmented to 𝑅𝐿’s observation space.

Nine participants undergo a 15-minute training, followed by a
52.5-minute baseline trial with a rule-based adaptive scheme. Work-
load conditions are manipulated to create scenarios of underload
(UL), normal load (NL), and overload (OL). Participants then ex-
perience experimental trials with 𝑅𝐿 or 𝑅𝐿𝐻 agents, guided by a
Soft Actor-Critic (SAC) agent making automation decisions in two
state spaces. The first relies on task interaction data (𝑅𝐿), while the
second augments it with estimated human workload states (𝑅𝐿𝐻 ),
as illustrated in Figure 6. Physiological, workload, and task-related
data are collected for assessment.

Results show that 𝑅𝐿 achieves the highest rewards but also the
highest workload, while RB has lower rewards and the lowest work-
load. 𝑅𝐿𝐻 maintains a lower workload but achieves the lowest re-
wards, excelling in overload conditions. 𝑅𝐿 outperforms in system
monitoring and resource management, while 𝑅𝐿𝐻 excels in track-
ing and communication. Automation time analysis revealed 𝑅𝐵

focused on automating resource management, 𝑅𝐿 on system mon-
itoring, and 𝑅𝐿𝐻 on communication. Despite 𝑅𝐿𝐻 reducing per-
ceived workload, the more complex state space may have hindered
reward achievement. Despite reducing perceived workload, 𝑅𝐿𝐻
faces challenges due to a more complex state space. In conclusion,
the paper underscores the potential of human-aware reinforcement
learning to revolutionize team collaborations and enhance overall
performance in dynamic and high-stakes task environments.
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4.2 Measuring human data utilization
The proposed SU method for reinforcement learning was used to
observe the utilization of human data in the study described in
Section 4.1. SU metrics were computed using SAC agents’ trained
actor network and (state, action, next state) pairs from the prior
investigation. Due to SAC agents optimizing a stochastic policy, KL
divergence between actor network output probability distributions
(Eq. 4) was used instead of euclidean distance. Figures 7 and 8
display state utilization for RL and RLH agents trained on data from
trial 1 (𝑅𝐵), trial 2 (𝑅𝐿), and trial 3 (𝑅𝐿𝐻 ).

Figure 7: State Utilization for the RL agent trained on task
interaction data in the NASA MATB-II experiment.

Figure 8: State Utilization for the RLH agent trained on task
interaction and human internal states data in the NASA
MATB-II experiment.

Figure 7 illustrate that for the 𝑅𝐿 agent, the agent relied the
most on the last task automated (𝑎𝑐𝑡𝑖𝑜𝑛), followed by tracking
task interaction data (𝑡𝑟𝑐𝑘_𝑖𝑛𝑡𝑟 ). The 𝑅𝐿𝐻 agent had access to the
estimated human workload data and the SU metric reveals that the
agent relies the most on the overall workload estimates, followed
by the auditory, physical, and cognitive workload components, as
shown in Figure 8. The trends were similar with the agents trained
on data collected during trial 1 (𝑅𝐵), trial 2 (𝑅𝐿), and trial 3 (𝑅𝐿𝐻 ).

5 DISCUSSION & CONCLUSION
This study introduced and validated the State Utilization (SU) met-
ric, assessing an RL agent’s reliance on individual state features.
Preliminary validation in a cartpole environment demonstrated
the agent’s ability to ignore noisy/non-informative states. Applied
to a human-robot teaming scenario with human states, the SU
metric revealed higher reliance on human workload data, guiding

more automation decisions without categorizing human data as
noise. Additionally, distinct trends in reliance on overall workload,
physical, auditory, cognitive workload features emerged, providing
insights into the rationale behind specific RL agent actions.

Utilizing overall workload the most to determine automation
decisions (or no-automation) is how typical rule-based adaptive
autonomy agents are designed; thus, it is interesting that the 𝑅𝐿𝐻
agent had similar reliance on overall workload despite relatively
more information being available. However, the agent did utilize
other workload components, which may have promoted more effec-
tive decisions. For example, auditory workload was the second most
utilized state and is also only present during the communications
task. This task was also the most difficult task for participants to
complete and the most common task for the agent to automate. Sim-
ilarly, the continuous fine-motor control required for the tracking
task may be why physical workload was the next highest utilized
state. There are a few discrepancies though, as speech and visual
workload were the lowest utilized workload states. This may be
attributed to redundant information. For example, speech and audi-
tory workload were only associated with the communications task
and were not required for any other task. Thus, the RLH agent may
rely on a single state to gain some understanding of the task due
to redundancy. Auditory workload may have been chosen for this
state, as speech was only required part of the time (e.g., the task
was being automated or the communications request was directed
at a different aircraft), but auditory processing was always required.
A similar case may be made for visual workload, as cognitive work-
load was utilized much more than visual and all tasks required both
of these components.

The experimental design maintains a task-agnostic observation
space for 𝑅𝐿 and 𝑅𝐿𝐻 agents, and the state utilization may differ
with task-specific features. Future studies will focus on leveraging
the SU metric to encourage AI reliance on multiple modalities, in-
stead of just human data during training. While preliminary results
are promising, further investigation into the effects of the replay
buffer on SU metric is necessary. The use of a replay buffer intro-
duces potential recency bias, evaluating the metric predominantly
on more recent samples. Additionally, the SU metric accuracy may
be affected if the RL agent utilizes a sparse state space. Despite these
considerations, the SU metric shows potential in guiding the under-
lying reliance of a decision network on specific modalities during
training, and future studies aim to develop state utilization-based
training for reinforcement learning.

The State Utilization (SU) metric is a groundbreaking advance
in Human-Robot Interaction (HRI) research, quantifying RL agents’
reliance on specific state features, including human data in human
robot teaming scenarios. It streamlines RL system designs by focus-
ing on essential information in the state space, enabling faster agent
training, particularly in scenarios where human interaction data
collection is costly. It also significantly enhances RL agent’s policy
explainability, paving the way for a transformative future. Future
emphasis on AI’s reliance on multiple modalities via SU-based train-
ing promises to revolutionize decision-making, elevating overall
performance across diverse tasks. The potential for context-based
training, with specific modifications, enables personalized models
using rich human metadata, positioning the SU metric as a valuable
tool in advancing HRI research and RL training methodologies.
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