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In human robot teams, robots need to adapt to 

human external states (such as position and 

velocity) and internal states (such as workload 

and fatigue)

Problem: How much are adaptive black-box 

algorithms such as reinforcement learning 

algorithms relying on human data?

Proposed solution: New state utilization metric 

that quantifies RL agent’s reliance on state 

features, including human data in human robot 

teaming scenarios.

Tests: 

Observed Benefit: Metric indeed increases 

explainability in multimodal neural networks. 

Significant potential impact in multimodal data 

fusion across various application

INTRODUCTION

• Observe the difference between output of 

the decision network with original dataset 

and permuted dataset.

• A smaller change implies the state 

feature 𝑆𝑛𝑖 have low utilization and vice 

versa.

METHOD ABLATION STUDIES ON CARTPOLE
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Figure 1: State utilization to quantify utilization of human 

data by a robot
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• Cartpole by OpenAI Gym (Toy Problem) 

• NASA MATB-II (Human Subjects Study)

• SU computed in prior human-robot 

studies [3][4] showed the RL agent's 

dependence on human input.

MEASURING UTILIZATION OF HUMAN DATA IN 

HUMAN ROBOT TEAMING

Figure 2: Permuting/shuffling samples of a state feature 

𝑺𝒏𝒊 in the replay buffer to break the association between 

the state feature 𝑺𝒏𝒊 and the output 𝑸

S = 𝑥, ሶ𝑥, 𝜃, ሶ𝜃  

𝐴 = 𝐿𝑒𝑓𝑡, 𝑅𝑖𝑔ℎ𝑡   

Figure 3: Cartpole Environment by OpenAI Gym
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Figure 4: Average Rewards and State Utilization (SU) 

across episodes for the Cartpole environment solved by a 

DDQN agent with 𝐒 = 𝒙, ሶ𝒙, 𝜽, ሶ𝜽 .

Figure 5: Average Rewards and State Utilization (SU) 

across episodes for the Cartpole environment without 𝐒𝐧𝟎 

i.e., 𝐒 = 𝒙, ሶ𝒙, 𝜽, ሶ𝜽 .

Figure 6: Average Rewards and State Utilization (SU) 

across episodes for the Cartpole environment with a 

random noise state feature (𝐒𝐧𝟒), i.e., 𝐒 = 𝒙, ሶ𝒙, 𝜽, ሶ𝜽, 𝑵𝒐𝒊𝒔𝒆 .

Figure 8:  State Utilization for the RLH agent trained on 

task interaction and human internal states data in the 

NASA MATB-II experiment.

Figure 7: The NASA Multi-Attribute Task Battery-II Env.

Figure 3: Adaptive Human-Robot Teaming architecture 

with human state estimates augmented to RL's 

observation space.
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