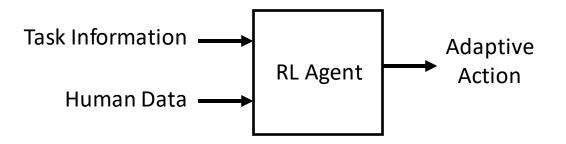


Measuring State Utilization During Decision Making in Human-Robot Teams Human-Robo Human-Robo

Saurav Singh
Rochester Institute of Technology
Rochester, New York, USA
ss3337@rit.edu


Jamison Heard
Rochester Institute of Technology
Rochester, New York, USA
jrheee@rit.edu

Motivation

- Human's complex behaviors significantly influence human-robot team performance.
- Requires robot adaptions based on external states and internal states.
- Uncertainties in how robots utilize human data in decision-making.

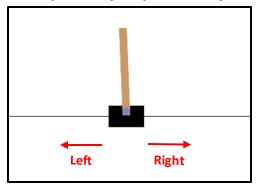
State Utilization (SU) metric for reinforcement learning that quantifies the utilization of state features and human data modalities by the robot.

Method

- Inspired by permutation feature importance [1] and modality utilization [2], extended to reinforcement learning.
- Compute the output *Y* of the decision network (e.g., Q-network in DDQN).
- Randomly permute the samples of state feature s_{ni} while keeping the state features s_{nj} , $j \neq i$ unchanged.
- Compute the new output Y_i of the decision network and observe the discrepancies in the output.

[1] Leo Breiman. 2001. Random forests. Machine Learn. 45 (2001), 5-32.

[2] Saurav Singh, Panos P Markopoulos, Eli Saber, Jesse D Lew, and Jamison Heard. 2023. Measuring Modality Utilization in Multi-Modal Neural Networks. In 2023 IEEE Conf. on Artificial Intelligence (CAI). IEEE, 11–14.


$$S = \{x, \dot{x}, \theta, \dot{\theta}\}$$

$S = \{\chi, \dot{\chi}, \theta, \dot{\theta}\}$

Cartpole by OpenAI Gym

$$S = \{x, \dot{x}, \theta, \dot{\theta}\} Noise\}$$

$$A = \{Left, Right\}$$

Human Subjects Study

- State Utilization metric can give insight into the robot's reliance on human data.
- SU computed in prior human-robot studies [3][4] showed the RL agent's dependence on human input.

[3] Saurav Singh and Jamison Heard. 2022. A Human-Aware Decision Making System for Human-Robot Teams. In 2022 17th Annual System of Systems Engineering Conference (SOSE). IEEE, 268–273.

[4] Saurav Singh and Jamison Heard. 2022. Human-aware reinforcement learning for adaptive human robot teaming. In 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 1049–1052.

Summary

- Developed State Utilization metrics for Reinforcement Learning to quantify the reliance of decision networks on specific modalities, including human data in human robot teaming scenarios.
- SU metric enhances RL agent's policy explainability.
- Future work focuses on AI's reliance on multiple modalities via SU-based training promises to revolutionize decision-making, elevating overall performance across diverse tasks.

Paper Title: Measuring State Utilization During Decision Making in Human-Robot Teams

Saurav Singh (ss3337@rit.edu)

Jamison Heard (jrheee@rit.edu)

