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Motivation

Human-Robot Teaming
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Artificial Intelligence
(Reinforcement Learning)

Quantifying utilization
of human data

Human state-based adaptations

Human's complex behaviorssignificantly influence human-robotteam
performance.

Requiresrobot adaptionsbased on external states and internal states.

Uncertaintiesin how robots utilize human data in decision-making.

Task Information e Adaptive
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State Utilization (SU) metric for reinforcement learning that quantifies
the utilization of state features and human data modalities by the robot.
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Method

* Inspired by permutationfeature importance[1] and modality utilization [2], extended to reinforcement learning.

 Computethe output Y of the decision network (e.g., Q-network in DDQN).

* Randomly permute the samples of state feature s;,; while keeping the state features s,,;,j # { unchanged.

* Compute the new outputY; of the decision network and observe the discrepanciesin the output.
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[1] Leo Breiman.2001. Random forests. Machine Learn. 45 (2001),5-32.
[2] Saurav Singh, Panos P Markopoulos, Eli Saber, Jesse D Lew, and Jamison Heard. 2023. Measuring Modality Utilization in Multi-Modal Neural Networks. In 2023 IEEE Conf. on Artificial Intelligence (CAl). IEEE, 11-14.
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Ablation Studies
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Observation Space RL agent Action Space Environment

Human Subjects Study @ n AL
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 SU computedin prior human-robot
studies [3][4] showed the RL agent's l l

dependence on human input.
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[3] Saurav Singh and Jamison Heard. 2022. A Human-Aware Decision Making System for Human-Robot Teams. In 2022 17th Annual System of Systems Engineering Conference (SOSE). IEEE, 268—273.
[4] Saurav Singh and Jamison Heard. 2022. Human-aware reinforcement learning for adaptive human robot teaming. In 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 1049-1052.
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Summary

* DevelopedState Utilization metrics for Reinforcement Learning to quantify the reliance of decision networks on
specific modalities, including human datain human robot teaming scenarios.

* SU metric enhances RL agent's policy explainability.

* Future work focuses on Al's reliance on multiple modalitiesvia SU-based training promises to revolutionize decision-
making, elevating overall performance across diverse tasks.
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